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Abstract. The problem of sequentially finding an independent and identically distributed (i.i.d.) se-
quence that is drawn from a probability distribution Q1 by searching over multiple sequences, some of
which are drawn from Q1 and the others of which are drawn from a different distribution Q0, is con-
sidered. Within a Bayesian formulation, a sequential decision rule is derived that optimizes a tradeoff
between the probability of false alarm and the number of samples needed for the decision. In the case
in which one can observe one sequence at a time, surprisingly, it is shown that the cumulative sum
(CUSUM) test, which is well-known to be optimal for a non-Bayesian statistical change-point detection
formulation, is optimal for the problem under study. Specifically, the CUSUM test is run on the first
sequence. If a reset event occurs in the CUSUM test, then the sequence under examination is abandoned
and the rule switches to the next sequence. If the CUSUM test stops, then the rule declares that the
sequence under examination when the test stops is generated by Q1.
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1 Introduction

In the classical sequential testing problem, first studied byWald (1945), one sequentially observes
an independent and identically distributed (i.i.d.) sequence generated by one of two distributions
Q0 or Q1, and wishes to test hypothesis H1 that the sequence is generated by Q1 against
hypothesis H0 that the sequence is generated by Q0. The goal is to find a decision rule that uses
a minimal number of samples, on average, while satisfying certain error probability constraints,
or that optimizes some other tradeoff between error probabilities and the average number of
samples. Under this model, the sequential probability ratio test (SPRT) was shown to be optimal
by Wald and Wolfowitz (1948). Poor (2009) provides a comprehensive review of this topic.

In this paper, we consider a generalization of the sequential testing problem: sequential search
over multiple sequences. In particular, we consider N sequences {Y i

k ; k = 1, 2, · · · }, i = 1, · · · , N ,
where for each i, {Y i

k ; k = 1, 2, · · · } are i.i.d. observations taking values in a set Ω endowed with
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a σ-field F of events, that obey one of the two hypotheses:

H0 : Y i
k ∼ Q0, k = 1, 2, · · ·

versus

H1 : Y i
k ∼ Q1, k = 1, 2, · · ·

where Q0 and Q1 are two distinct, but equivalent, distributions on (Ω,F). We use q0 and
q1 to denote densities of Q0 and Q1, respectively, with respect to some common dominating
measure. The sequences for different values of i are independent. Moreover, whether the ith

sequence {Y i
k ; k = 1, 2, · · · } is generated by Q0 or Q1 is independent of all other sequences.

Here, we assume that for each i, hypothesis H1 occurs with prior probability π0 and H0 with
prior probability 1− π0. Assuming that one can observe only one sequence at a time, our goal
is to find a sequence that is generated by Q1 in a way that minimizes an appropriate measure
of error probability and sampling cost. This model is motivated by many applications. For
example, in so called “cognitive radio” systems, wireless communication devices need to find
unoccupied frequency bands before they can transmit information. Hence, a wireless device
should listen to each possible frequency band to determine whether it is free or not. In this
scenario, the observations from one frequency band consist of one sequence, Q0 corresponds
to the distribution of the received signal when there are other transmissions in the band, and
Q1 corresponds to the distribution of the received signal when the frequency band is free. The
task of finding a free frequency channel clearly can be modelled as that of finding a sequence
generated by Q1. It is of interest to do so with minimal delay, in order to make optimal use of
spectral resources. However, the device can typically examine only one band at a time due to
hardware limitations. Thus this problem fits the above model very well.

To proceed with the above test, at each time, we select a sequence, say sequence j, and
make an observation from this sequence. After making each observation, we can choose from
one of the following three actions: 1) stop sampling and claim that the sequence we are currently
observing is generated by Q1; 2) continue to the next observation from the same sequence to
gather more evidence about its statistical behavior; or 3) abandon the sequence that we are
currently observing and switch to another sequence. Hence if a sequence is abandoned, we will
not come back and test it again. Without loss of generality, we start taking samples from the
first sequence, and switch to the second sequence if we decide to abandon the first sequence.
Similarly, we will switch to the (i+ 1)th sequence if we decide to abandon the ith sequence. To
ensure that there is always a sequence to switch to, we consider the case N = ∞.

We use sk to denote the index of the sequence that we are observing at time k. Hence,
we observe {Y sk

k ; k = 1, 2, · · · } sequentially. The observations generate the filtration {Fk; k =
1, 2, · · · } with Fk = σ(Y s1

1 , Y s2
2 , · · · , Y sk

k ). We use φk to denote the Fk-measurable switching
function at time k. Here, φk(Fk) = 1 if we decide to abandon sequence sk and switch to the next
sequence, that is sk+1 = 1+sk. On the other hand φk(Fk) = 0 if we decide to continue observing
sequence sk, that is sk+1 = sk. Let T denote the set of all stopping times with respect to the
filtration Fk. Note that the sequence s1, s2, · · · , and hence the filtration F1,F2, · · · , depends
on the sequence φ1,φ2, · · · of switching functions. A stopping time τ ∈ T will decide when we
should stop sampling and declare that the sequence we are currently observing is generated by
Q1. More specifically, if τ = k, we should stop sampling at time k, and declare that sequence sk
is generated by Q1. There are two performance indices: 1) the error probability that sequence sτ
is generated by Q0, that is P (Hsτ = H0), where Hj is the true hypothesis satisfied by sequence
j; and 2) the average number of samples we take to make a decision, that is E{τ}.

Our goal is to determine the stopping time τ and the switching rules φ = {φ1,φ2, · · · } to
solve the following optimization problem:

inf
τ∈T ,φ

[P (Hsτ = H0) + cE{τ}] . (1)
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Here c > 0 is a constant that represents the cost of taking one sample. We assume c < 1 − π0,
as the case c ≥ 1− π0 is trivial: we simply do not take any observations and choose a sequence
at random as being generated by Q1.

2 Solution

We use πk = P (Hsk = H1|Fk) to denote the posterior probability that sequence sk is gener-
ated by Q1 after observing {Y s1

1 , · · · , Y sk
k }. After making each observation, we can update the

posterior probability using Bayesian rule:

π1 =
π0q1(Y 1

1 )

π0q1(Y 1
1 ) + (1− π0)q0(Y 1

1 )
(2)

πk+1 =
πkq1(Y

sk+1

k+1 )

πkq1(Y
sk+1

k+1 ) + (1− πk)q0(Y
sk+1

k+1 )
1(φk = 0) +

π0q1(Y
sk+1

k+1 )

π0q1(Y
sk+1

k+1 ) + (1− π0)q0(Y
sk+1

k+1 )
1(φk = 1),

in which 1(·) is the indicator function.

Theorem 1. The optimal stopping time for (1) is specified by a parameter π∗
U , whose value

depends on the cost of sampling c, and is given by τopt = inf{k : πk > π∗
U}. And at time k, we

switch to another sequence if, and only if, πk < π0.

It is now easy to see the equivalence between the optimal test in Theorem 1 and the CUSUM
test proposed by Page (1954) and shown to be optimal for a non-Bayesian statistical change-
point detection problem by Moustakides (1986). More specifically, let Lk = q1(Y

sk
k )/q0(Y

sk
k ),

then under the condition that φk = 1 if πk < π0 and φk = 0 if πk ≥ π0, the recursive formula
in (2) is the equivalent to the following recursive formula:

R1 = log(L1), (3)

Rk+1 = (Rk + log(Lk+1))1(Rk ≥ 0) + log(Lk+1)1(Rk < 0) = max{Rk, 0}+ log(Lk+1).

In terms of Rk, the optimal solution is to switch to the next sequence if Rk < 0 (this corresponds
to a reset event in the CUSUM test, which is to reset Rk to zero, if Rk < 0), and to stop when
Rk ≥ (1 − π0)π∗

U/(π0(1 − π∗
U )). Hence the test in Theorem 1 is equivalent to a CUSUM test

with parameter exp ((1− π0)π∗
U/(π0(1− π∗

U )) , in which we switch to another sequence if a reset
event occurs in the CUSUM test, and we stop and claim that the sequence under examination
is generated by Q1 when the CUSUM test stops.
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