
University of California

Los Angeles

Scene Representations for Video Compression

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Georgios Georgiadis

2015

c© Copyright by

Georgios Georgiadis

2015

The dissertation of Georgios Georgiadis is approved.

Alan Yuille

Ying Nian Wu

Stanley Osher

Stefano Soatto, Committee Chair

University of California, Los Angeles

2015

ii

To Ewelina, my wife.

iii

Table of Contents

1 Introduction . 1

1.1 Overview of video compression systems 2

1.2 Thesis outline . 5

2 Visual Structures . 10

2.1 Visual Structures . 11

2.1.1 Structure Representation 15

2.2 Encoding Track-Templates In a Video 16

2.2.1 Integration With Standard Video Encoders 21

2.3 Experiments . 23

2.4 Discussion . 26

3 Visual Textures . 28

3.1 Related work . 30

3.2 Textures . 31

3.2.1 Texture Representation . 33

3.3 Inference . 34

3.3.1 Image Texture Synthesis 35

3.3.2 Video Texture Synthesis 36

3.3.3 Synthesizing Multiple Textures Simultaneously 39

3.3.4 Texture Qualitative Criterion 41

3.3.5 Inference of Texture Representation 43

iv

3.3.6 Extending the Representation to Multiple Scales 45

3.4 Experiments . 45

3.5 Discussion . 52

4 Texture Compression . 53

4.1 Prior related work and contributions 54

4.2 Background . 55

4.2.1 Stationarity . 56

4.2.2 Ergodicity . 57

4.2.3 Markovianity and sufficient reduction 58

4.3 Textures . 59

4.3.1 Characterization . 60

4.3.2 Inference . 62

4.4 Experiments . 63

4.5 Discussion . 68

5 Texture Segmentation . 70

5.1 Related Work . 72

5.2 Foreground / Background Partition 75

5.3 Scale-adapted filter responses . 80

5.4 Combining multiple partitions . 81

5.5 Experiments . 84

5.6 Discussion . 90

v

6 Encoding Scene Structures for Video Compression 91

6.1 Related work . 92

6.2 Texture / Structure partition . 93

6.2.1 Temporal redundancy . 93

6.2.2 Spatial redundancy . 95

6.2.3 Compression . 95

6.2.4 Extrapolation . 95

6.3 Segmentation . 96

6.4 Evaluation . 98

6.5 Discussion . 101

7 Scene-Aware Video Modeling and Compression 103

7.1 Related work . 104

7.2 Formalization . 105

7.3 Encoder . 107

7.3.1 Occlusions, optical flow, and temporal redundancy 107

7.3.2 Proper sampling . 109

7.3.3 Structure / Texture partition 110

7.3.4 Encoding trackable regions 111

7.3.5 Encoding non-trackable regions 113

7.3.6 Encoding video frames . 114

7.4 Experiments . 116

7.5 Discussion . 118

vi

8 Actionable Saliency Detection: Independent Motion Detection

Without Independent Motion Estimation 120

8.1 Occlusion detection fails to detect occlusions 122

8.2 Key idea . 124

8.3 Derivation of the discriminant . 126

8.4 Computation of the optimal discriminant 128

8.5 Effects of (mis)calibration . 130

8.6 Empirical evaluation . 132

8.7 Discussion . 135

9 Discussion . 139

A Actionable Saliency Detection: Derivation of the Discrimant . 142

References . 146

vii

List of Figures

2.1 Varying the co-variant detection threshold produces different densities of

trackable regions. There are typically three regions of interest, shown in

the images. The tracks that persist through a wide a range of thresholds

are typically the longest and most accurate. 14

2.2 Examples of track-templates, H
(avg)
k (left) and H

(fst)
k (right). Each

row shows track-templates at different scales (29×29, 15×15 and 7×7).

H
(avg)
k is smoother since the representation involves averaging, whereas

H
(fst)
k preserves image discontinuities better. 17

2.3 Encoding structures in a frame. Problem illustration. For this instance

of the problem the dictionary is composed of 9 track-templates: 4 white,

4 light gray and 1 dark gray square. The original frame is decomposed

into 3 layers. Occluded track-templates are pushed to the back layers.

Our proposed solution retrieves the 3 middle frames, which along with

the track-template parameters are used to reconstruct the input frame

(right). 18

2.4 Left to right: (1) Model illustration. Top nodes represents 3 track-

templates. Bottom nodes show the intersections of the 3 track-templates.

Edges are drawn between every template and intersections occupied by

them. (2) Index sets VT and VI . (3) Mk. 19

2.5 Reconstructing a frame. Visual structures are decomposed into depth

layers and reconciled by overlaying them. The input frame is recon-

structed by adding back to the visual structures the background layer. 22

viii

2.6 Results for tracks in MOSEG [BM10]. Top: q(H
(avg)
k (F̂k), F̂k) and

q(H
(fst)
k (F̂k), F̂k) as a function of length and a histogram of track lengths.

Bottom: q(H
(avg)
k (F̂k), F̂k) and q(H

(fst)
k (F̂k), F̂k) as a function of scale

and the distribution of track scales. 23

2.7 PSNR against bit rate. “VS+H.265”(black) and “VS+H.264”(blue) out-

perform respectively H.265(yellow) and H.264(red). Figures correspond

to the sequences in Fig. 2.8. 25

2.8 Propagated and newly-created tracks. Non-transparent tracks corre-

spond to tracks that are motion-predicted from previous frames. Semi-

transparent tracks are tracks that start in this frame. All results shown

correspond to the fifth frame of each video. 26

3.1 Reconstructed frame in a video at 40% compression. Left: Video

Epitome [CFJ08], Right: Our approach. Below: Zoomed-in view of the

red box. Our method improves reconstruction of both homogeneous

and textured areas. 29

3.2 Regular, stochastic, domain- and range-deformed textures. 30

3.3 Left: A subset of the image domain, Π, with its local neighborhood. Ω

denotes the domain of the texture. Right: Texture representation θω̄

and samples drawn from Ω. 34

3.4 Image Texture Synthesis. For each neighborhood ω̂s in the synthesized

texture, we find its nearest neighbor in ω̄. 37

3.5 Temporal Texture Synthesis. We forward-synthesize the video from the

texture representations of each frame using the previously synthesized

frame as a boundary condition. 38

ix

3.6 The first term in Eq. (3.6) identifies global range/domain transforma-

tions of the input texture (left images). The second term identifies

erroneous texture synthesis results (right images). 42

3.7 Texture representation, θω̄. Top: Input textures. Middle: Inferred

representations. Bottom: Synthesized textures from the inferred repre-

sentation. Right pair of images: Complexity ξ determines the represen-

tational power of θω̄. Increasing the number of stored samples, allows

the representation to capture the domain transformation. 43

3.8 Left: Confusion tables for six competing methods. Right: Precision of

methods for various values of retrieved nearest neighbors. 44

3.9 Texture dataset: 10 randomly selected examples. 46

3.10 Texture Qualitative Function (TQC): Ordered synthesized textures

using TQC. Left: Original textures. Right: Synthesized textures, left

being the most similar to the input texture. 47

3.11 Two examples where E2 fails and ETQC succeeds in ordering the synthe-

sized textures correctly with respect to the input texture. Images with

a red outline have been incorrectly ordered. The issue arises mainly

in regular textures. The regions within the purple ellipses are major

sources of error. 48

3.12 Temporal texture synthesis. Synthesizing a novel instance of a texture

in a video sequence. The first frame of a 20-frame long input video

sequence is shown in the top row. 1st, 10th and 20th synthesized frames

are shown below each input image. 49

x

3.13 Video texture synthesis in natural images (Hole-filling). From left to

right: (i) Last frame (5th) of input video, (ii) Structure regions, (iii)

Structure / Texture regions, (iv) Synthesized frame (our result), (v)

Video Epitome [CFJ08] (zoom in to view details). 50

4.1 Affine and projective textures and their rectified versions. The trans-

formation g can be determined in pre-processing via canonization

[ZLG10, Soa10], or can be described to parametrize the statistic φω and

inferred as part of the compression process (i.e. in the search for ω). . 60

4.2 Multiscale analysis of textures. Top row, left to right: Texture “within”

texture. Entropy plot. Synthesized texture at small scale, synthesized

texture at a higher scale. Bottom row: Different textures appearing at

different scales. The regions surrounded by the blue rectangles are the

textures at the smaller scale (shown in the entropy plot) and the regions

surround by the red rectangles are the textures at the larger scale. For

each scale we show both ω and ω̄ (with the bigger rectangle of each

color corresponding to the respective ω̄). It can be seen that the smaller

scale legitimately captures the texture of a single rope thread, but fails

to capture the texture of the rug that consists of woven threads. That

is captured by the larger region (right). 63

4.3 Entropy plots for the 8 textures shown in Fig 4.4. The black line

indicates the scale (specifically the size of the side) of ω selected by our

algorithm. 64

xi

4.4 Odd Columns: Input texture. The large red box indicates the inferred

scale of ω̄. The smaller red box indicates the inferred scale of ω. Even

Columns: Synthesized textures from ω̄. The perceptual characteristics

of the textures have been captured, indicating that I(ω̄) is indeed a

Markov sufficient statistic, at least sufficient for the purpose of perceptual

comparison. 65

4.5 Rate-Distortion curves. Top: Mean distance of filter response histograms

against ω̄ size. At each point, we show the synthesized texture given

that scale of ω̄. At the top right we show the original texture. The

qualitative behavior, as expected, indicates that larger size of ω̄ yields

synthesized textures that are increasingly similar to the original sample.

Bottom: Plots of RMS Error and DSSIM [WBS04] as a function of

the size of ω̄. Standard metrics used for measuring the fidelity of a

reconstructed image fail to capture the perceptual quality. 67

4.6 The texture in Fig. 4.1 is compressed and re-synthesized without prior

rectification. (first and second figures). The texture is then rectified,

compressed, re-synthesized and retransformed back with the inverse

of the canonizing transformation (third and fourth figures). The two

approaches achieve approximately the same perceptual quality but the

rectified texture does so at a lower complexity cost (|ω̄rectified| ' | ω̄original4 |). 68

5.1 An overview of our method. Figure/ground partitions (middle)

are computed for a number of seed regions (top, shown in purple).

We then aggregate the boundary information deduced from each

one of the partitions to produce the final segmentation (bottom).

Boundaries of partitions are shown in red. 71

xii

5.2 A typical run of a foreground expansion. Through the iterations

Q(si(t)) increases when a superpixel is added (green points indi-

cate inclusion of a superpixel). Whenever the local background is

updated, Q(si(t)) may decrease. 77

5.3 Top: The current foreground (“fg”) and local background (“bg”)

shown for three consecutive iterations. At (t − 1) we show the

current state of the two regions. At time t a superpixel is added

(its boundary is shown in red in the top-middle figure), which

makes the foreground to expand, whereas the background stays the

same. This leads to an increase of Q(si(t)). At (t + 1), the local

background is recomputed (the boundary of the superpixel added

is shown in red in the bottom-right figure), and this (in this case)

leads to a temporary decrease in the value of Q(si(t+ 1)). Bottom:

Q(si(t)) for the three iterations of the foreground expansion shown

in this figure. 78

5.4 The filter bank used: edge, bar and blob filters at one scale. . . . 80

5.5 Foreground/Background partitions for selected seed locations. Given

a seed region si(0), the algorithm expands it to form si(∞). Top:

Boundaries of segmented regions, si(∞), are shown in red. Bottom:

si(∞) are represented by their mean intensity values. 82

5.6 Segmentation results in the BSDS300 training set. Detected bound-

aries are shown in red. 87

5.7 Multi-scale segmentation results. By varying the number of regions,

we can produce segmentation results at different scales. From left

to right: 3, 7, 11, 15, 19 regions. 88

xiii

5.8 Segmentation results in the BSDS300 testing set. Bottom row:

Failure cases. Detected boundaries are shown in red. 89

6.1 Pipeline. From left to right, top to bottom: (1) Tracked regions map.

(2) Initial segmentation (red indicates boundaries of tracked regions,

blue and green indicate boundaries of texture region candidates). (3)

Regions of the image that did not satisfy the stationarity assumption

underlying the texture hypothesis. (4) Updated tracked region map. (5)

Final structure / texture partition. (6) Compressed textured region.

(7) Synthesized textured region. (8) Natural blending of textures and

structures. 99

6.2 Reconstruction of structured regions. Left: Input frame, Center: Video

Primal Sketch, Right: Our method. Our method successfully preserves

salient regions. 100

6.3 Samples from the “bird-sea” sequence. Left: Input sequence, Center:

Overlaid tracked regions and synthesized textures. Right: Natural

blending of synthesized textures and tracked regions. 102

7.1 (COLOR) Occlusion detection and optical flow: Original images (top)

and optical flow (bottom), visualized according to the color scheme

shown in the top left corner of each image. Black regions are occluded,

so no motion estimate is available since there is no region in image

I(x, t− 1) that, transported with w(x, t) yields I(x, t). 108

7.2 Segmentation [AMF11]. Varying a threshold yields structurally different

segmentations. Original test frame (left). Segmentation using a low

threshold (center). Segmentation with a higher threshold (right). . . . 109

xiv

7.3 Covering of trackable regions [SBK10]. The rest is encoded by the

texture module. 111

7.4 Original Test Sequences (top). Texture/Structure partition (bottom).

Regions in green are labeled trackable regions and we can assign a

motion vector to them. Textured regions are either homogenous regions

or stochastic textures and it is preferable to spatially predict them since

they cannot be tracked. 112

7.5 Low resolution image patches (top). Image Patches of higher resolution

synthesized with our algorithm (bottom). 115

7.6 Qualitative results of our encoder. Predicted image using spatial, tempo-

ral and texture synthesis prediction modes (left). Residual error: black

corresponds to zero error, white to large (center). Reconstructed video

frames (right). 117

7.7 Quantitative comparison of our encoder with other methods. Our

method significantly outperforms all other methods (including H.264)

in a wide range of kbps in terms of PSNR. Results shown are for

the sequences city (upper left), flower garden (upper right), mobile

(bottom left) and coastguard (bottom right). Comparisons were ran for

a duration of 50 frames. 118

8.1 Detecting salient regions under camera motion: (1st, 3rd): Tracked

feature points (blue) are classified as inliers (green) or outliers (red).

(2nd, 4th): Estimated salient point density obtained by our algorithm.122

xv

8.2 Four aerial views of a motorway. In all images cars in the right

lane are stationary and cars in the left lane are moving. The true

outliers in these cases are the moving cars in the left lane. The

first row shows the dense tracked points in each image. The second

row shows in color the detected outliers. Color convention is the

same as in Fig. 8.4. 133

8.3 Three aerial views of a bridge taken from an airliner during a turn

approaching Boston’s airport. The first row shows the images with

the tracked points and the second highlights the salient regions.

The color codes are the same as in Fig. 8.4. 134

8.4 Sample results from the Hopkins 155 dataset: Odd rows: Images

with tracked points. Red and green points show the locations of

tracked points as predicted by the model. Points in green are

the points that are classified as inliers and in red those that are

classified as outliers. Blue dots (not visible for inlier points) are

the true positions of tracked points. Even rows: Images showing

in color the detected outliers. The color corresponds to a sum of

Gaussians centered at each salient point. 138

xvi

List of Tables

3.1 Video texture synthesis evaluation. TQC for each of the 12 sequences

on the texture regions (smaller is better). In brackets, we show the

corresponding compression percentage achieved. 51

5.1 Comparison of various segmentation methods in the BSDS300

testing set. The results of competing algorithms reported are taken

from the study by [AMF11]. Best results (ignoring “Human”) are

shown in boldface. Our method outperforms all other methods in

the PRI and Covering metrics and scores second in the VI metric. 85

8.1 Comparison on salient point detection performance of our algorithm

against [HJ92], RANSAC under epipolar constraint and [SJK09]

in terms of the F-measure. We compared the performance on

15 sequences. The ground truth and trajectories for the first 7

sequences were provided by the Hopkins 155 dataset. The last

8 were manually annotated by the authors and trajectories were

extracted using [SBK10]. Our algorithm significantly outperforms

all other 3 methods in almost all sequences. 136

xvii

Acknowledgments

I would first like to thank my advisor Prof. Stefano Soatto, for giving me the

opportunity to work in the Vision Lab and for trusting me in making my own

research decisions. His guidance has been invaluable and our discussions have

been intellectually stimulating and will be forever memorable. I would also like to

thank all members of my doctoral committee, Profs. Stanley Osher, Ying Nian

Wu, Alan Yuille as well as Prof. Zhuowen Tu, a former member of the committee,

for their constructive comments, suggestions and support. Special thanks also go

to Profs. Ganesh Sundaramoorthi and Alessandro Chiuso for valuable discussions.

I am extremely grateful for having the opportunity to work alongside Alper

Ayvaci, Avinash Ravichandran and Michalis Raptis, who have been guiding,

supporting and helping me during my early years as a Ph.D. student. Special

thanks go to Vasiliy Karasev. His help has been invaluable and his criticisms have

unquestionably improved the quality of my work.

During my Ph.D. years at UCLA, I had the opportunity to meet a set of

extraordinary people: Among others, former members Kamil Wnuk, Taehee

Lee, Chaohui Wang, Jonathan Balzer and Joshua Hernandez, as well as current

ones, Brian Taylor, Virginia Estellers, Konstantine Tsotsos, Nikos Karianakis and

Jingming Dong. Working together will be an unforgettable experience.

I would also like to thank my parents, Dora and Nikos, and my sister Marilena

who have supported me emotionally and enabled me to follow my dreams all these

years. Finally, I would like to thank my wife, Ewelina who has endured me during

my entire doctoral studies. Her patience and support were extraordinary. Without

a doubt, my Ph.D. journey would have been extremely tedious and mundane

without her by my side.

xviii

Vita

1984 Born, Nicosia, Cyprus.

2008 M.Eng. in Electrical and Electronic Engineering,

Imperial College, London

2009 Visiting Student Research Collaborator, Princeton University.

2010 M.S. in Electrical Engineering, Stanford University.

2012 Teaching Assistant, Computer Science Department,

University of California, Los Angeles.

2013 M.S. in Computer Science, University of California, Los Angeles.

2013 Emerging Graphics Group Intern, Adobe Systems Inc.

2014 Technical Consultant, HBO Inc.

2014, 2015 Research Intern, Dolby Laboratories.

2015 Ph.D. in Computer Science,

University of California, Los Angeles.

Publications

xix

1. G. Georgiadis, A. Chiuso, S. Soatto, “Texture Representations for Image

and Video Synthesis”, In IEEE Conference on Computer Vision and Pattern

Recognition, 2015.

2. G. Georgiadis, S. Soatto, “Exploiting Temporal Redundancy of Visual

Structures for Video Compression”, In Data Compression Conference, 2015.

3. G. Georgiadis, A. Chiuso, S. Soatto “Texture Compression”, In Data Com-

pression Conference, 2013.

4. G. Georgiadis, A. Ravichandran, S. Soatto and A. Chiuso “Encoding Scene

Structures for Video Compression”, In Proc. SPIE Int. Soc. Opt. Eng.

8499, 2012.

5. G. Georgiadis, A. Ayvaci and S. Soatto “Actionable Saliency Detection:

Independent Motion Detection Without Independent Motion Estimation”,

In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

6. G. Georgiadis and S. Soatto “Scene-Aware Video Modeling and Compres-

sion”, In Data Compression Conference, 2012.

7. L. Lai, H. V. Poor, Y. Xin and G. Georgiadis “Quickest search over multiple

sequences”, In IEEE Transactions on Information Theory, 2011.

8. L. Lai, H. V. Poor, Y. Xin and G. Georgiadis “Quickest Sequential Op-

portunity Search in Multichannel Systems”, In International Workshop on

Applied Probability, 2010.

9. G. Leseur, N. Meunier, G. Georgiadis, L. Huang, J. DiCarlo, B. Wandell

and P. B. Catrysse “High-speed document sensing and misprint detection

in digital presses”, In Proc. SPIE Int. Soc. Opt. Eng. 7536, 2010.

xx

Abstract of the Dissertation

Scene Representations for Video Compression

by

Georgios Georgiadis

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Stefano Soatto, Chair

Video analysis has evolved into a fundamental research problem following an

unprecedented growth of video content consumption in the last few years. Its

applications span a wide range of tasks including video editing, indexing, classifica-

tion, surveillance and autonomous driving. While for these tasks, representations

that capture the main properties of the scene have been investigated, this has still

not been done for the purpose of video compression. Current video compression

systems largely ignore the underlying scene and instead only model its projection

on the video frames. The goal of this thesis is to show that by modeling the scene

further improvements can be achieved in compressing video data.

In the first part of the thesis, it is shown how a scene can be decomposed into

two types of regions called “Visual Structures” and “Visual Textures”. These

regions are defined and algorithms that allow their inference are proposed. Based

on such partition, a video compression system is designed that achieves a significant

improvement over current state-of-the-art methods. In addition, the definition

of textures is expanded to model transformations of the domain and range of

the image and applications such as texture compression and segmentation are

discussed. In the second part, extensions of the video compression system are

xxi

proposed that take advantage of further modeling of the scene, such homogeneity,

occlusions and tight boundaries of regions. Finally, further applications of scene

modeling are shown in various problems such as video hole-filling and independent

motion detection.

xxii

CHAPTER 1

Introduction

With video acquisition methods becoming more varied, complex and ubiquitous,

the need to design algorithms for video analysis is leading the technology sector

into new territories. Video content consumption is no longer limited through

specific, traditional mediums such as the movie theater or the television set,

but also include mobile phones, tablets and even virtual reality headsets. Both

video content and viewing conditions are extremely varied and complicated to

predict. This variety imposes an extremely challenging problem to video analysis

algorithms as they are now faced with a lot of unknowns to deal with. However,

such variety is in fact the reason why we need automation in the first place.

With a large amount of video content available on the Internet, users require

better and faster retrieval mechanisms, better organization and more information

about the content. To do that a series of problems needs to be solved, such as

video retrieval, indexing, classification, recognition and localization. At the same

time, similar problems need to be solved for video editing both in professional

and amateur settings, autonomous driving and other applications. Such video

analysis tools are no longer a desire, but instead a necessity. Recently, an

increasing number of solutions have been appearing for most of these problems.

However, an important problem remains unaddressed; Internet bandwidth is under

unprecedented pressure from video transmission.

Cisco projects [CIS14] that by 2019, 105.2 Exabytes of video will be traveling

1

the Internet every month. That is in fact equivalent to 5 million years of video

content being played per month. In addition, Internet video traffic will comprise

77% of all Internet traffic. It is therefore undeniable that video content will

dominate Internet traffic in the next few years. On top of that, higher video

resolutions will place a huge pressure over the already over-burdened Internet

bandwidth. The question that then arises is whether the current video compression

systems can cope with such demand. To answer that, we would need to briefly

overview the current video compression standards.

1.1 Overview of video compression systems

Since H.262/MPEG-2, ITU-T and ISO/IEC have been collaborating together

to produce a universal video compression standard, that has helped the video

industry standardize video playback mechanisms. Their most successful effort has

lead to H.264/MPEG-4 AVC that was designed between 1999 and 2003. Recently,

with the rise of higher video resolutions and more playback devices, the two groups

have united to develop a new video compression standard called High Efficiency

Video Coding (HEVC). From start, the new standard has been designed to cope

with increased video resolutions and the use of parallel processing architectures

[SOH12].

Since H.261, video compression standards have been adhering to a hybrid

approach that performs inter/intra frame prediction and 2-D transform coding.

Each frame is broken down into non-overlapping blocks. Each block could be

coded using either inter-frame or intra-frame prediction, with the first type being

the most common. The residual error is then transformed, scaled, quantized,

entropy-coded and then transmitted to the receiver (decoder). In this architecture,

the encoder contains the decoding processing loop in order to avoid any drift

2

between the encoder and decoder [SOH12].

In these approaches, a large effort has been put into dividing the input to

appropriate structures in order to maximize the compression gains. HEVC utilizes

coding tree units (CTU), whereas previous standards depended on macroblocks.

CTUs can be split into various sizes for better compression and can be bigger

than traditional macroblocks. Motion compensation allows prediction of blocks

from ones in other frames of the video, while intra-frame prediction supports 33

directional modes (instead of 8 in H.264) [SOH12].

Overall, traditional video compression systems operate directly on the pixel

values, essentially ignoring the scene structure. Doing so, they optimize locally and

ignore any semantic information that could be utilized for further improvements.

This setting has been heavily explored in the last few decades and latest improve-

ments return diminishing returns. Such “low-level” approaches could be argued

that have reached a local optimal point in terms of performance. In order to

break the so-called “compression-wall”, video compression needs to move towards

a different direction. For example, a different type of video modeling could be

one where the encoder is not necessarily interested in reproducing exact intensity

values of a frame, but instead is interested in reproducing what is perceivable

by the human eye in that particular frame. In particular, we could consider a

system that models the scene depicted in a video that is able to reconstruct each

video frame up to a level that makes the reconstruction appear indistinguishable

from the input frame. Such modeling could potentially provide not only further

improvements in video compression, but it could also output useful information

for other video analysis applications.

There have been a few approaches in the video compression literature that

attempted to operate on the scene structure to achieve a better compression ratio.

3

Even though the following chapters will provide a thorough discussion of related

approaches, a brief introduction will be provided in this section to introduce

the reader to the main topics in the literature. In particular, [NDK12] provides

a good survey of such attempts. Perceptual-oriented video coding approaches

rely on mechanisms that aim to optimize a perceptual metric that measures the

similarity of input and reconstructed videos. Such methods typically follow the

standard hybrid approach as far as the encoder is concerned, with the difference

that certain regions of frames are not encoded. An image completion system

is typically utilized at the decoding side to fill in the missing data [NBW09].

The image completion module is typically implemented using techniques from

inpainting and/or texture synthesis. Parametric image completion approaches

[PS00, HB95, DCW03] approximate the probability desnity function (pdf) of a

texture using a compact parameter set, whereas non-parametric methods [KEB05,

EL99] synthesize novel instances of the texture by sampling samples of the

stochastic process directly from the input texture. The image completion module

is responsible to respect boundary conditions and fill in the missing data in a way

that is consistent with the already reconstructed video frames.

Since image completion methods do not reconstruct the original intensity

values exactly, but only capture the region’s statistical properties, it is important

to utilize such systems only on regions that reconstructing their intensity values is

perceptually irrelevant. These regions should be characterizable by their statistical

properties, rather than by individual realizations. Therefore, perceptual-oriented

video coding approaches need to be evaluated using a perceptual metric, since

otherwise, they would perform poorly at regions where the image completion

module was used. Approaches to approximate perceptual metrics such as the

Structural Similarity index (SSIM) [WBS04] and Visual Information Fidelity (VIF)

[SB06] have had some success, however none has replaced the peak signal-to-noise

4

ratio (PSNR) in traditional comparisons. However, it is well known that PSNR is

a poor predictor of perceptual similarity [WB09]. Methods that are interested in

perceptual similarity typically employ human subjects to perform some type of

subjective evaluation.

Other methods include works such as “Video Primal Sketch”, which is an

extension of primal sketch to video [ZXZ11]. It partitions video frames to “struc-

tures” and “textures” and achieves improved performance over H.264. Structures

are represented using a basis of functions, whereas textures are represented using

a set of histograms. The parametric approach to both “structures” and “textures”

limits the generalizability of the algorithm, since the parametric models chosen

were generally hand-crafted for the specific dataset used. Other approaches that

could be utilized in compression include texture modeling approaches such as

[WHZ08] that are concerned with “inverting” the texture synthesis process.

1.2 Thesis outline

Video content consumption through the Internet (or through other bandwidth-

sensitive mediums) became a reality due to the existence of lossy compression

mechanisms. Lossy compression is feasible in video, due to image properties

that allow relatively large reconstruction errors without significant penalty in

perceptual similarity. This is unlike other data, that even small errors could render

the compressed output corrupt. The current video compression standards rely

therefore on lossy compression and modeling of pixel values. However, this second

paradigm is not necessary for achieving a high perceptual similarity. Instead, it

is possible to model higher level notions, such as the scene and still be able to

achieve high quality reconstructed videos. This type of modeling could be able to

offer higher compression ratios, thus allowing the infrastructure to cope with the

5

ever-increasing demand.

The approach followed in this thesis is based on the proposal that video frames

are a projection of the scene. As such, by modeling the scene, we should be able

to reconstruct each video frame reliably and accurately. Certain characteristics

of the scene are extremely important for video compression, such as photometry,

dynamics, geometry, topology and statistical regularities. By modeling accurately

such properties, it should be possible to achieve a higher compression ratio than

by simply modeling the intensity values locally. This is based on the intuition that

regions of the scene are repeatable in multiple frames or exhibit spatial regularity.

By identifying such regions we could encode them once for the entire duration of

the video and then simply use the model to reconstruct them at decoding time.

In general, the projection of the scene onto video frames would be assumed to

induce two types of regions: “structures” and “textures”. In the rest of the thesis,

it will be shown how each type of region can be modeled and how the two of them

can be combined to provide a video compression encoder/decoder system.

In Chapter 2, a video coding system is presented that partitions the scene

into “visual structures” and a residual “background” layer. The system exploits

the temporal redundancy of visual structures to compress video sequences. A

dictionary of track-templates is constructed, which corresponds to a representation

of visual structures. A subset of the dictionary’s elements is chosen to encode

video frames using a Markov Random Field (MRF) formulation that places the

track-templates in “depth” layers. The video coding system offers an improvement

over H.265/H.264 and other methods in a rate-distortion comparison.

In Chapter 3, a general treatment on textures is proposed. Specifically, it

is known that in texture synthesis and classification, algorithms require a small

texture to be provided as an input, which is assumed to be representative of

6

a larger region to be re-synthesized or categorized. Such textures are defined

and their characterizations are automatically retrieved. Most works generate

these small input textures manually by cropping, which does not ensure maximal

compression, nor that the selection is the best representative of the original. A

new representation is constructed that compactly summarizes a texture, while

using less storage, that can be used for texture compression and synthesis. The

representation is also integrated in a proposed video texture synthesis algorithm

to generate novel instances of textures and video hole-filling. Finally, a novel

criterion is proposed that measures structural and statistical dissimilarity between

textures.

In Chapter 4, the definition of “visual textures” is expanded to handle general

transformations of the domain and range of an image. Inference algorithms are

proposed for estimating the “state” of such textures and their “variability”. This

mechanism represents the encoding stage. A non-parametric sampling scheme

is proposed for decoding, by synthesizing textures from their encoding. While

these are not faithful reproductions of the original textures (so they would fail a

comparison test based on PSNR), they capture the statistical properties of the

underlying process, as we demonstrate empirically. Finally, the tradeoff between

fidelity (measured by a proxy of a perceptual score) and complexity is quantified.

In Chapter 5, an image segmentation algorithm is presented that generates

multiple foreground/background partitions of the image by local region-based

segmentations. The regions are evolved by comparing aggregated local statistics

with their surrounding neighborhoods. But rather than aggregating statistics

computed at each scale, a scale is selected based on the local image structure.

The resulting multiple segmentations can be grouped into one partition using

pairwise affinities. Results of the method are compared to human annotations

7

and to alternate approaches using several common metrics.

In Chapter 6 an approach to partition a video stream into structure regions

that are temporally encoded and disjoint from texture regions, that are synthesized

so as to preserve the statistical properties of the original data stream is described.

Structures encode regions of an image that can be put into correspondence in

different images of the same scene, and are encoded via a dictionary that takes

into account spatial and temporal regularities. Textures are synthesized in a

manner that preserves perceptual similarity.

In Chapter 7 a video compression methodology is described that exploits

the structure of the data formation process, whereby the “source” is the scene,

and the “channel” includes scaling and occlusion phenomena that are critical

elements of image formation. Thus the scheme involves occlusion detection, optical

flow computation, texture/structure partition, and a notion of proper sampling.

Results are shown that exceed baseline compression performance, albeit at an

increased computational cost.

In Chapter 8 a different application of video analysis is explored. A model

and an algorithm to detect salient regions in video taken from a moving camera

is presented. In particular, the focus of this study was on capturing small objects

that move independently in the scene, such as vehicles and people as seen from

aerial or ground vehicles. Many of the scenarios of interest challenge existing

schemes based on background subtraction (background motion too complex),

multi-body motion estimation (insufficient parallax), and occlusion detection

(uniformly textured background regions). A robust statistical inference approach

is adopted to simultaneously estimate a maximally reduced regressor, and select

regions that violate the null hypothesis (co-visibility under an epipolar domain

deformation) as “salient”. The algorithm can perform even in the absence of

8

camera calibration information: while the resulting motion estimates would be

incorrect, the partition of the domain into salient vs. non-salient is unaffected.

The algorithm is demonstrated on video footage from helicopters, airplanes, and

ground vehicles.

In Chapter 9 a summary of the findings is provided. For video compression

to move forward it is necessary to take into account the phenomenology of the

data formation process. In particular, rather than compressing the images, one

should compress the scene. Furthermore, scaling and occlusion phenomena play a

critical role and they are thoroughly explored in this thesis.

9

CHAPTER 2

Visual Structures

With an ever-increasing video consumption rate on the Internet, we are faced

with a continuously increasing pressure on available bandwidth [Ric10]. While

the new H.265 [ITU] has improved performance over existing standards, the

majority of video compression techniques have traditionally been confined in

modeling and predicting pixel values of video frames. We consider an alternative

to traditional coding schemes, where we assume that a video has been generated

by an underlying scene. Our aim is to model and compress the source (scene)

rather than the output (pixel values).

Motivated by video compression, we partition the scene into two types of

regions, “visual structures” and a background layer. “Visual structures” are

regions of images that trigger isolated responses of a co-variant (feature) detector.

These include blobs, corners, edges, junctions and other sparse features generally

assumed to correspond to properties of the scene. Structure regions that can be

put into correspondence across frames are called “trackable regions”. Trackable

regions can persist over a large number of frames. We leverage on their temporal

redundancy to compress them, by storing their compact representations once in

the first frame they appear and predicting them in all subsequent ones. This

allows compressing any structures that persist in more than one frame. The

background layer generally exhibits spatial regularity and can be compressed by

standard coding techniques. The visual structures’ representations along with the

10

background layer are overlaid together on video frames, which are then further

compressed by a standard video encoder.

It has been previously argued that an image can be partitioned into structures

and textures ([GZW03a, SCV02, BVS03]) based on statistics computed in that

one image. We test whether image structures arise from properties of the scene,

by leveraging on the notion of proper sampling [Soa10]. Proper sampling requires

multiple images of the same scene to determine whether a structure is “real” in

the sense of corresponding to something in the scene or an “alias”, an artifact of

nuisance factors in the image formation process. We model and compress those

that satisfy this test and allow a standard video encoder to compress the rest.

Finally, partitioning the scene into various types of regions for video coding has

also been previously proposed [NBW09, GS12, WA93]. However these methods

do not model “visual structures” to take advantage of their temporal redundancy.

In this chapter, we introduce the notions of “visual structures” and “trackable

regions”. We compute a dictionary of track-templates (a representation of visual

structures) and then choose a subset of its elements to encode a video sequence

using a Markov Random Field (MRF) formulation that places the track-templates

in layers. This allows an optimal use of the dictionary by minimizing the recon-

struction error of the predicted frames. We show how this system improves the

H.265/H.264 performance significantly in a rate-distortion sense.

2.1 Visual Structures

Digital images {Ixy}(x,y)∈∆=(1,1):(X,Y) ∈ RX×Y are obtained by averaging a function

I : D ⊂ R2 → R; p 7→ I(p) on a neighborhood B of the point pxy ∈ D of size σ > 0.

In general, Ixy = I(pxy) + nxy where nxy = nxy(I) is the quantization error. We

11

consider groups of transformations of the sensor plane, g : D ⊂ R2 → R2; p 7→ g(p),

and denote their induced action on the image by I ◦ g .
= I(g(p)). For example, the

translation group is represented by a translation vector T ∈ R2, via g(p)
.
= p+ T ,

so that I ◦ g(p) .
= I(p + T). Each group element g ∈ G determines a “frame”.

For instance, in the Euclidean plane, the translation group determines a reference

frame with origin at the point T ∈ R2. The discussion below applies to other

finite-dimensional Lie groups of the plane such as Euclidean, similarity, affine,

and projective.

Canonization is a constructive process to eliminate the effects of a group G

acting on the data (the set of images I). The group organizes the data into orbits.

A covariant detector identifies a canonical element of each orbit that co-varies with

the group. Hence, in the corresponding (moving) frame, the data is independent

of the group. Formally, a differentiable functional ψ : I ×G→ R; (I, g) 7→ ψ(I, g)

is said to be local, with effective support σ if its value at g only depends on a

neighborhood of the image of size σ > 0, up to a residual that is smaller than

the mean quantization error. For instance, for a translational frame g, if we

call I|ωσ(g)
an image that is identical to I in a neighborhood ω of size σ centered

at position g ≡ T , and zero otherwise, then ψ(I|ωσ(g)
, g) = ψ(I, g) + ñ, with

|ñ| ≤ 1
XY

∑
x,y |nxy|. For other groups, we consider the image in the reference

frame determined by g, or the “transformed image” I ◦ g−1.

If we call ∇ψ .
= ∂ψ

∂g
the gradient of the functional ψ with respect to (any)

parametrization of the group, then under the “transversality” conditions det(∇∇ψ) 6=
0, the equation ∇ψ = 0 locally determines a unique function g (a canonical rep-

resentative) of I, g = ĝ(I), via the Implicit Function Theorem. If the canonical

representative co-varies with the group, in the sense that ĝ(I ◦ g) = (ĝ ◦ g)(I),

then the functional ψ is called a co-variant detector (e.g. Laplacian-of-Gaussian

12

(LoG) and the difference-of-Gaussians (DoG)). Varying σ produces a scale-space,

whereby the locus of extrema of ψ describes a graph in R3, via (p, σ) 7→ p̂ = ĝ(I;σ).

Starting from the smallest σ, one would have a large number of extrema; as σ

increases, extrema will merge or disappear. Although in a two-dimensional scale

space, extrema can also appear as well as split, they are increasingly rare as scale

increases, so the locus of extrema as a function of scale is well approximated by a

tree, called the co-variant detection tree [LS11]. A region ω ⊂ D is canonizable at

scale σ if there exists a co-variant detector ψ that has one and only one isolated

extremum in ω at that scale. We call this region a “visual structure”. The region

may be canonizable at multiple scales.

Canonization yields a number of regions each containing exactly one “struc-

ture”. An image is properly sampled if any co-variant detector functional operating

on the sampled image {Ixy} ∈ RX×Y yields the “same answer” (topology) that

it would if ran on the “original” (continuous) image I : D → R. Assuming

co-visibility, Lambertian reflection and constant illumination, topological equiva-

lence of co-variant detector responses between the scene and the image can be

replaced by that between different images of the same scene. Thus, two temporally

adjacent images are properly sampled at scale σ0 in a region ω if, for all scales

σ ≥ σ0, there exists a one-to-one correspondence between covariant detection

trees in ω [Soa10].

Proper sampling yields as a byproduct a partition of the image(s) into two

regions: those for which unique correspondence across frames can be established

and the rest. We call the former ones trackable regions. Trackable regions are

both canonizable and properly sampled. Trackable regions are characterized by

the “signature” of each region at the coarsest scale at which it is tracked, for

instance the actual pixel values in a neighborhood of the origin of the tracked

13

Figure 2.1: Varying the co-variant detection threshold produces different densities of

trackable regions. There are typically three regions of interest, shown in the images.

The tracks that persist through a wide a range of thresholds are typically the longest

and most accurate.

frame, as well as the frame itself, for example position, orientation and scale for

the case of a similarity reference frame.

In practice, to determine the trackable regions, we use a feature point tracker

such as [LS11]. Which regions are classified as trackable regions, depends on the

detection threshold of each method. The effects of the threshold are visible in Fig.

2.1, where the number of tracks decreases by increasing the threshold. The ones

that persist are usually the longest and most stable, a fact which we exploit for

video compression.

Co-variant detector functionals can be chosen to canonize a variety of groups,

from the simplest (translation) to the most complex (homeomorphisms). The

larger the group, the more costly it is to encode, the larger the region that can

be encoded. The optimal choice of group depends on the statistics of the images

being compressed. For the purpose of illustration, in what follows we focus on the

similarity group of translations, rotations and isotropic scaling. In many cases

one can assume that (planar) rotation is negligible and focus on the location-scale

group. Tracking then provides a (moving) reference frame, relative to which one

14

can encode a portion of the region of the image. If the image is undergoing a

similarity transformation, no change will be observed in the moving frame, which

however is sometimes violated.

2.1.1 Structure Representation

A trackable region, with index k, that appears in frames t1 to t2, can be represented

losslessly by F̂k = {Fk(t1), . . . , Fk(t2)}, where Fk(t)
.
= {Ixy(t),∀(x, y) ∈ ωkσ(t)}.

Fk(t) corresponds to the intensity values at pixel locations (x, y) in a neighborhood

ωk at scale (area) σ at time t. The feature point tracker [LS11] provides a set of

regions F = {F̂1, . . . , F̂K}, where K is the number of trackable regions. We model

the trackable regions (and structures) in a video, using a time-invariant dictionary

element for each region that is of the same size as the region itself. We consider

two alternative time-invariant representations, which we call the “track-template”:

(a) H
(avg)
k (F̂k)

.
=

1

T

t2∑

t=t1

Fk(t) (b) H
(fst)
k (F̂k)

.
= Fk(1) , (2.1)

where T = t2− t1 + 1. H
(fst)
k is simply the intensity values of the track in the first

frame it appears. In the mean-squared-error sense, the best one in minimizing

the reconstruction error is H
(avg)
k . In Sec. 2.2.1, we show that by incorporating

our method in H.265 we outperform H.265 in a rate-distortion comparison. For

practical reasons (explained in Sec. 2.2.1), we are constrained to use H
(fst)
k .

One track-template is stored for each trackable region. The collection of all

the track-templates, {H1, . . . , HK}, from a video forms a dictionary, where the

scale of each dictionary element is naturally selected to be the coarsest scale at

which the track was detected. In Fig. 2.2, we show elements of the dictionary

for a particular video. The track-templates introduce a compression gain at the

expense of fidelity. For comparison, if we were to use F̂k to represent the trackable

15

regions, the distortion would have been 0, but the cost of encoding a track would

have been β× (σ+ 4)×T , where β is a constant representing the cost of storing a

double (i.e. β = 8 bytes), σ is the scale of the track in space and 4 is the number

of parameters of the track (x, y, t, k). The track-template instead only requires

β× (σ+ 4T). Hence the compression ratio is ξ = (σ+4)T
σ+4T . Note that a compression

gain is achieved (i.e. ξ ≥ 1) for σ ≥ 0 and for T ≥ 1. We measure the distortion

introduced by computing the dissimilarity of the representation Hk(F̂k) from each

instance of the track Fk(t):

q(Hk(F̂k), F̂k) =
1

T
1

σ

t2∑

t=t1

‖Hk(F̂k)− Fk(t)‖2 , (2.2)

where ‖.‖ denotes the Euclidean norm. This expression computes the average

squared distance per pixel from the representation to the instances of the track.

If we are aiming for a specific fidelity, this function can be used to test whether

the representation achieves it. In case it does not, we use a simple mechanism

that would allow us to achieve that accuracy: We take each track and recursively

break it in the middle, treating each half as an independent track. We stop the

recursion when the desired fidelity is achieved for every track. The downside is

that each split adds an additional element to the dictionary, which reduces the

compression.

2.2 Encoding Track-Templates In a Video

The dictionary of track-templates and the track parameters (i.e. (x, y, t, k)) need

to be transmitted/stored in order to reconstruct the frames. As is, when the

tracks are projected back to the image domain, there will be certain subsets

of the domain where tracks would be overlapping. Since the track-templates,

Hk(F̂k), are an approximation of the instantaneous intensity values in each frame,

16

Figure 2.2: Examples of track-templates, H
(avg)
k (left) and H

(fst)
k (right). Each

row shows track-templates at different scales (29×29, 15×15 and 7×7). H
(avg)
k is

smoother since the representation involves averaging, whereas H
(fst)
k preserves image

discontinuities better.

{Fk(t1), . . . , Fk(t2)}, it typically occurs that the intensity value on each pixel in

each frame is best reconstructed by one track-template among all that occupy

it. To utilize the dictionary as well as possible, we need to choose for each pixel

location, the track-template that minimizes the reconstruction error. In terms of

coding cost though, this approach is inefficient.

To reduce the coding cost, we could instead consider each region where two

or more tracks intersect and choose the track-template that minimizes the error

on each intersection. In this way, we would be assigning one “minimizer” for

each intersection, rather than for each pixel. We would then transmit the index

of the minimizer and the boundaries of the intersection. However, the number

of intersections per frame is large, so the number of parameters would still be

prohibitively too many.

Instead, we follow an alternative approach. We choose to assign an ordering of

the track-templates by placing them on depth layers. A track-template placed on

a layer with a smaller “depth” would be overlaid on top of another one placed on

a layer with a larger “depth”. Hence, by selecting an ordering of track-templates,

we implicitly choose which of them to use to reconstruct the video frames. By

17

6

Fig. 4. Encoding structures in a frame. Problem illustration. For this instance of the problem the dictionary is composed of 9 track-
templates: 4 white squares, 4 light gray squares and 1 dark gray square (in this illustrative example, the track-templates could be
assumed as given to us, i.e. we have not used a tracker to retrieve them). In the original frame (left), there are 4 patches that are
non-overlapping. In addition, there is a light gray patch almost covering a white patch (therefore, 2 patches overlapping) and there
is also a white patch almost completely occluded by a light gray patch which is in turn occluded by a dark gray patch (therefore, 3
patches overlapping). Our proposed solution should retrieve the 3 middle frames. On the top layer, we retrieve the gray and white
patches on the left and right respectively and the occluder patches in the middle. In the next layer, the white occluded patch is
retrieved along with the middle patch of the other overlapping stack. Finally, in the last layer, the white patch is retrieved. Using
the dictionary, the positions and depths of the patches, we can then reconstruct the original frame. The reconstructed frame is
shown on the right.

Track
Templates

Template
Intersections

VT = { }1 2 K, , ,…
…

VI = { }K+1 K+2 K+N, , ,…
…

Track
Templates

Template
Intersections

Index set
of track

templates

Index set
of template

intersections

Track
Template

Intersections
that this template

occupies

K+1

K+L

K+M

Mk = { K+1, K+L, K+M}

VT = { }1 2 K, , ,…
…

VI = { }K+1 K+2 K+N, , ,…
…

Track
Templates

Template
Intersections

Index set
of track

templates

Index set
of template

intersections

Track
Template

Intersections
that this template

occupies

K+1

K+r

K+s

Mk = { K+1, K+r, K+s}

Index of
intersection

Fig. 5. Left to right: (1) Model illustration. Top nodes represent the 3 track-templates. Bottom nodes show all possible intersections
for 3 track-templates. Edges are drawn between every template and intersections occupied by them. (2) Index sets VT and VI . (3)
Index set Mk.

k 2 VT . Each intersection is a unique combination of template intersections. Let Mk be the index set of intersections
which are covered (or occupied) by template k 2 VT . Let dk for k 2 VT be the relative depth index of the template.
Assume that there are at most L layers, where L  K and that L = {0, 1, . . . L� 1}. Let li 2 VT denote the index of
the template assigned to intersection i 2 VI (i.e. it is the “minimizer”). Fig. 5 illustrates visually these quantities.

We also have the following constraints:

A1 : li = arg min
{k|i2Mk,k2VT }

dk, 8i 2 VI (3)

A2 : 8i 2 VI , 9k̃ 2 {k|i 2Mk, k 2 VT } s.t.8k0 2 {k|i 2Mk, k 2 VT }\{k̃}, dk̃ < dk0 (4)

A1 couples the depth of the track-template that has the smallest depth with the intersection i, by assigning its index
to li. A2 requires that for all intersections, there exists one track-template, whose depth is smaller than all others.
This is needed so that there is a unique “minimizer” for each intersection. Furthermore, the above constraints
couple several templates together, making the optimization complicated. The same problem can be solved by
considering only pairwise relationships of templates with intersections but an additional layer of modeling needs
to be introduced. Towards that end, we let zi = dli be the depth of each intersection i. We then have the following
constraint:

A3 : zi = min
{k|i2Mk,k2VT }

dk, 8i 2 VI (5)

A3 requires that the depth of an intersection is the same as the depth of the “minimizer” of that intersection.
We can then show that instead of satisfying A1 ^ A2 ^ A3 8i 2 Vi, we can equivalently satisfy the following:
8i 2 VI , A1 ^A2 ^A3 , ^k2VT

(C1k ^ C2k ^ C3k), where:

C1k : ¬((li = k) ^ (zi 6= dk)) (6)

C2k : ¬((li = k) ^ (i /2Mk)) (7)

C3k : ¬((li 6= k) ^ (zi � dk) ^ (i 2Mk)) (8)

C1k says that it cannot be the case that the minimizer of intersection i is template k, but the depth of the intersection
i is not the same as the depth of the minimizer k. C2k says that the it cannot be the case that the minimizer of

Input Frame 1st Layer 2nd Layer 3rd Layer Reconstructed Frame

Figure 2.3: Encoding structures in a frame. Problem illustration. For this instance

of the problem the dictionary is composed of 9 track-templates: 4 white, 4 light gray

and 1 dark gray square. The original frame is decomposed into 3 layers. Occluded

track-templates are pushed to the back layers. Our proposed solution retrieves the 3

middle frames, which along with the track-template parameters are used to reconstruct

the input frame (right).

following such a scheme, we would simply append a scalar to the track parameters,

hence characterizing the track-templates with the parameter set (x, y, t, k, d),

where d corresponds to the “depth” or ordering of that particular track-template

(in each frame). This solution essentially performs a global optimization over

all track-templates, which we propose to solve in one step. An example of the

proposed solution is shown in Fig. 2.3.

To determine the ordering of the track-templates we base our solution on

[WLP09], where the proposed model was used for segmentation, ordering and

multi-object tracking. We use this model for video compression. Our solution

modifies the original cost function, by dropping a number of terms that do not

apply in our case (e.g. terms modeling spatial interactions for segmentation).

Specifically, let VT = {1, 2, . . . , K} be the index set of track-templates. Let VI =

{K+1, . . . , K+N} be the index set of intersections. Let Hk be the appearance of

track-template k ∈ VT (i.e. either H
(fst)
k or H

(avg)
k). Each intersection is defined to

be a unique combination of track-templates overlapping. Let Mk be the index set

18

Track
Templates

Template
Intersections

VT = { }1 2 K, , ,…
…

VI = { }K+1 K+2 K+N, , ,…
…

Track
Templates

Template
Intersections

Index set
of track

templates

Index set
of template

intersections

Track
Template

Intersections
that this template

occupies

K+1

K+L

K+M

Mk = { K+1, K+L, K+M}

VT = { }1 2 K, , ,…
…

VI = { }K+1 K+2 K+N, , ,…
…

Track
Templates

Template
Intersections

Index set
of track

templates

Index set
of template

intersections

Track
Template

Intersections
that this template

occupies

K+1

K+r

K+s

Mk = { K+1, K+r, K+s}

Index of
intersection

Figure 2.4: Left to right: (1) Model illustration. Top nodes represents 3 track-templates.

Bottom nodes show the intersections of the 3 track-templates. Edges are drawn between

every template and intersections occupied by them. (2) Index sets VT and VI . (3) Mk.

of intersections which are occupied by track-template k ∈ VT . Let dk for k ∈ VT
be the relative depth index (ordering) of the track-template. Assume that there

are at most L layers, where L ≤ K and that L = {0, 1, . . . L − 1}. Let li ∈ VT
denote the index of the track-template assigned to intersection i ∈ VI (i.e. it is

the “minimizer”). Fig. 2.4 illustrates these quantities. In addition, we introduce

constraints A1 and A2. A1 couples the track-template with the smallest depth

with intersection i, by assigning its index to li. A2 requires that the depth of one

track-template is smaller than all others (“unique minimizer”):

A1 : li = arg min
{k|i∈Mk,k∈VT }

dk,∀i ∈ VI , (2.3)

A2 : ∀i ∈ VI ,∃k̃ ∈ {k|i ∈Mk, k ∈ VT}s.t.∀k′ ∈ {k|i ∈Mk, k ∈ VT}\{k̃}, dk̃ < dk′

(2.4)

These constraints couple several templates together making the optimization

complex. The same problem can be solved by considering pairwise relationships

of templates and intersections only, but an additional layer of modeling needs to

be introduced. Towards that end, we let zi = dli be the depth of each intersection

i. We then have the following constraint:

A3 : zi = min
{k|i∈Mk,k∈VT }

dk,∀i ∈ VI . (2.5)

19

A3 requires that the depth of an intersection is the same as the depth of the

“minimizer” of that intersection. It was shown by [WLP09] that the following

equivalence holds: ∀i ∈ VI , A1∧A2∧A3 ⇔ ∧k∈VT (C1k ∧C2k ∧C3k) (for proof refer

to [WLP09]), where:

C1k : ¬((li = k) ∧ (zi 6= dk)) , (2.6)

C2k : ¬((li = k) ∧ (i /∈Mk)) , (2.7)

C3k : ¬((li 6= k) ∧ (zi ≥ dk) ∧ (i ∈Mk)) . (2.8)

The constraints are only pairwise relationships between template k and intersection

i, which can be solved by a pairwise MRF. Specifically, the index set of nodes

in the MRF is denoted by V = VT ∪ VI . At each node we have a random

variable Γi ∀i ∈ V . Γi takes a value γi from its label set Gi. The whole MRF

comprises of a discrete random vector Γ = (Γi)i∈V , which takes a value γ in

G = G1 × . . . × G|V |. The edges of the MRF connect the templates with the

intersections denoted by E = {(k, i)|k ∈ VT , i ∈ VI}. Hence, we have the following

energy with configuration γ:

E(γ) =
∑

i∈V

φi(γi) +
∑

(k,i)∈E

ψk,i(γk, γi) . (2.9)

The nodes have the following potentials:

∀i ∈ VI , γi = (li, zi), φi(γi) = ||Ii −Hli|| , (2.10)

∀i ∈ VT , γi = di, φi(γi) = α|di| , (2.11)

where the first expression measures the reconstruction error and the second one

gives a higher preference to smaller depth values. The pairwise potentials are

given by:

20

ψk,i(γk, γi) = ψ1
k,i(γk, γi) + ψ2

k,i(γk, γi) + ψ3
k,i(γk, γi) , (2.12)

ψ1
k,i(γk, γi) = λ11I((li = k) ∧ (zi 6= dk)) , (2.13)

ψ2
k,i(γk, γi) = λ21I((li = k) ∧ (i /∈Mk)) , (2.14)

ψ3
k,i(γk, γi) = λ31I((li 6= k) ∧ (zi ≥ dk) ∧ (i ∈Mk)) . (2.15)

We solve γopt = arg minγ E(γ) using any standard inference method e.g. TRW-

S [Kol06]. The optimization is performed for each frame independently. In

the original work [WLP09], the set VT corresponds to objects, rather than to

track-templates and the set VI corresponds to pixels rather than intersections.

Intersections were introduced in our problem to improve compression. We fix

α = 1, λ1 = 50, λ2 = 1 and λ3 = 10.

2.2.1 Integration With Standard Video Encoders

Once we retrieve the ordering of the track-templates using the previous step we can

reconstruct the frames by transmitting the parameter set for each track-template:

(x, y, t, k, d). The compression ratio of the representation to the uncompressed

lossless one is ξ = (σ+4)T
σ+5T . For integer-valued σ and T , ξ ≥ 1 for (σ > 1, T > 1).

We are therefore able to compress any track of length T ≥ 2 (i.e. the “trackable

regions”). Using the depth d, we can reconstruct each frame by overlaying the

structured regions with a smaller depth on top of others. In Fig. 2.5, we show

how a frame from a video is decomposed into layers and then reconstructed to

recover all trackable regions.

To store the track-templates we use the following procedure: At encoding,

each track-template is stored once in the first video frame it appears and in the

remaining frames we store a constant intensity value e.g. 0 or the mean of the

21

+

Input
Visual Structures Layers (Excluding Background Layer) Reconstructed

Visual Structures

Input
Frame

Reconstructed
Visual Structures

Background
Layer

Reconstructed
Frame

≈ =

Figure 2.5: Reconstructing a frame. Visual structures are decomposed into depth

layers and reconciled by overlaying them. The input frame is reconstructed by adding

back to the visual structures the background layer.

local neighborhood. In addition, we also store the track-template parameters i.e.

(x, y, t, k, d). At decoding, we are able to recover each track-template by simply

selecting the appropriate image region that corresponds to that track. We then

propagate the track-template to other frames using its stored parameters. Note

that with this approach, it is impossible to recover H
(avg)
k . This is due to the fact

that a track-template that is not on the top layer (i.e d = 0) cannot be recovered,

since another track at a “higher” layer has been overlaid on top of it. When using

H(fst) though, track-templates are always put on the top layer in the first frame

they appear. This allows us to recover the exact track-templates at the decoder

and hence reconstruct the structured regions.

Regions of the image not occupied by track-templates are encoded as a back-

ground layer. Each frame sent to a standard video encoder (e.g. H.265) is composed

by the track-templates that first appear in that frame and the background layer

(Fig. 2.5).

22

5 10 150

5000

10000

15000

Length

N
u
m
b
e
r
o
f
T
ra
ck

s

Histogram of Track Lengths

Low Density
Medium Density
High Density

5 10 15 200

1

2

3

4

5

6x 10−3

Length

q
(H

k
(F̂

k
),
F̂

k
))

−
H

(f
s
t)

k
(F̂

k
)

Reconstruction Error

Low Density
Medium Density
High Density

5 10 15 200

1

2

3

4

5

6x 10−3

Length

q
(H

k
(F̂

k
),
F̂

k
))

−
H

(a
v
g
)

k
(F̂

k
)

Reconstruction Error

Low Density
Medium Density
High Density

7 15 21 29 350

0.5

1

1.5

2

x 104

Scale

N
u
m
b
e
r
o
f
T
ra
ck

s

Histogram of Track Scales

Low Density
Medium Density
High Density

7 15 21 29 350

0.01

0.02

0.03

0.04

Scale

q
(H

k
(F̂

k
),
F̂

k
))

−
H

(f
s
t)

k
(F̂

k
)

Reconstruction Error

Low Density
Medium Density
High Density

7 15 21 29 350

0.01

0.02

0.03

0.04

Scale

q
(H

k
(F̂

k
),
F̂

k
))

−
H

(a
v
g
)

k
(F̂

k
)

Reconstruction Error

Low Density
Medium Density
High Density

Figure 2.6: Results for tracks in MOSEG [BM10]. Top: q(H
(avg)
k (F̂k), F̂k) and

q(H
(fst)
k (F̂k), F̂k) as a function of length and a histogram of track lengths. Bottom:

q(H
(avg)
k (F̂k), F̂k) and q(H

(fst)
k (F̂k), F̂k) as a function of scale and the distribution of

track scales.

2.3 Experiments

We investigated how well the structure representation reconstructs the individual

instances of the track, without applying the recursive, splitting method described

in Sec. 2.1.1. Towards this end, we used the 10 car and 2 people sequences from

the MOSEG dataset [BM10]. The sequences range from 19-60 frames, but for this

experiment, we only used the first 19 frames for all videos to achieve uniformity

in the results. We computed the structure representations and reconstructed

the trackable regions of the videos using our proposed solution. For each track-

23

template, we computed its average reconstruction error per pixel for each instance

of the track according to Eq. 2.2 for both H
(avg)
k and H

(fst)
k . We used 5 different

scales for tracking with the smallest one being 7× 7 and the largest being 35× 35.

In addition, we have varied the detection threshold of tracks and selected 3

representative levels. Typical distributions of tracks on the image domain, for the

three thresholds, are shown in Fig. 2.1.

In Fig. 2.6, we show how q(Hk(F̂k), F̂k) varies for both representations as

a function of the length of the track and the scale of the track. We also show

histograms of the distribution of tracks according to scale and length. For H
(avg)
k ,

the reconstruction error per pixel increases with increasing lengths and scales,

but the increase is small and hence shows that the average can reliably represent

tracks, even if they are long. For H
(fst)
k , the error increases slightly faster. The

average reconstruction error over all tracks and thresholds is 9.2670× 10−4 for

H
(avg)
k (F̂k) and 2.2× 10−3 for H

(fst)
k (F̂k).

We used our proposed system to encode the first 5 frames of the 12 video

sequences from MOSEG. We used H.265/H.264 to encode the frames with the

structure representations and background layers placed on them. We have also

encoded the videos using H.265 (HM 16.2)1, H.264 (JM 18.6 Reference Software

[JM008]) and JPEG. Note that our method can be used along any other video

encoding system, replacing H.265/H.264. In Fig. 2.7 we plot PSNR (dB) against

bit rate (kbps) for our approach (“VS+h.265”, “VS+h.264”), H.265, H.264 and

JPEG. For better coverage of the image domain, we expanded the domain of each

track-template by a factor of 32. To achieve varying fidelity for all methods, we

varied the quantization levels.

We consistently outperform all other methods in all sequences. In these experi-

1https://hevc.hhi.fraunhofer.de/

24

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)
P

S
N

R
 (

d
B

)

VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

VS+h.265
h.265
VS+h.264
h.264
JPEG

Figure 2.7: PSNR against bit rate. “VS+H.265”(black) and “VS+H.264”(blue) outper-

form respectively H.265(yellow) and H.264(red). Figures correspond to the sequences in

Fig. 2.8.

ments, the representations achieve at least 25 dB in PSNR for each of the instances

of the track they are representing (using our recursive, splitting algorithm), before

they are passed to H.265/H.264. At lower fidelity, the performance gain of our

method diminishes due to the parameter overhead that needs to be transmitted.

At higher fidelity our approach benefits from taking advantage of the temporal

redundancy of the tracks and is much more efficient than competitive approaches.

Fig. 2.8 illustrates where the gain is achieved in our methods. For the last

frame of the video sequences, we show which regions were predicted from previous

frames (non-transparent regions) and which first appeared in this frame (semi-

transparent). Generally, the larger the percentage of tracks that are temporally

predicted, the larger the improvement is over other methods. While H.265/H.264

25

Figure 2.8: Propagated and newly-created tracks. Non-transparent tracks correspond

to tracks that are motion-predicted from previous frames. Semi-transparent tracks are

tracks that start in this frame. All results shown correspond to the fifth frame of each

video.

encodes the temporally predicted tracks, our encoder predicts them from previous

frames. Our algorithm takes on average 96 seconds on the encoder side and 0.5

seconds on the decoder side per frame (excluding the computational time required

by H.265/H.264), for a MATLAB/C++ implementation on an Intel 2.4 GHz dual

core processor machine.

2.4 Discussion

We presented an alternative system to traditional video encoders, which was

shown to exploit the temporal redundancy of visual structures. The frames were

26

partitioned into structures and background layers. Structures are compressed using

a time-invariant representation. They are then ordered in terms of reconstruction

error and are used to reconstruct the video along with the background layers. Our

method can be wrapped around standard encoders such as H.265 and H.264 and

it outperforms both of them in a rate-distortion criterion.

27

CHAPTER 3

Visual Textures

“Visual textures” are regions of images that exhibit some form of spatial regularity.

They include the so-called “regular” or “quasi-regular” textures (Fig. 3.2 left),

“stochastic” textures (middle-left), possibly deformed either in the domain (middle-

right) or range (right). Analysis of textures has been used for image and video

representation [ZXZ11, GZW07], while synthesis has proven useful for image

super-resolution [FL11], hole-filling [EL99] and compression [WWO08].

For such applications, large textures carry a high cost on storage and compu-

tation. State-of-the-art texture descriptors such as [CMK14, SM13] are computa-

tionally prohibitive to use on large textures. These issues are especially acute for

video, where the amount of data is significantly larger.

Typically, these descriptors as well as texture synthesis algorithms assume

that the size of the input texture is small, and yet large enough to compute

statistics that are representative of the entire texture domain. Few works in

the literature deal with how to infer automatically this smaller texture from

an image and even fewer from a video. In most cases, it is assumed that the

input texture is given, usually manually by cropping a larger one. Wei et. al.

[WHZ08] propose an inverse texture synthesis algorithm, where given an input

texture I, a compaction is synthesized that allows subsequent re-synthesis of a

new instance Î. The method achieves good results, but it is semi-automatic, since

it relies on external information such as a control map (e.g. an orientation field or

28

Figure 3.1: Reconstructed frame in a video at 40% compression. Left: Video Epitome

[CFJ08], Right: Our approach. Below: Zoomed-in view of the red box. Our method

improves reconstruction of both homogeneous and textured areas.

other contextual information) to synthesize time-varying textures and on manual

adjustment of the scale of neighborhoods for sampling from the compaction.

We propose an alternative scheme, which avoids using any external information

by automatically inferring a compact time-varying texture representation. The

algorithm also automatically determines the scale of local neighborhoods, which is

necessary for texture synthesis [EL99]. Since our representation consists of samples

from the input texture, for applications such as classification [CMK14, SM13], we

are able to avoid synthesis biases that affect other methods [WHZ08].

Our contributions are to (i) summarize an image/video into a representation

that requires significantly less storage than the input, (ii) use our representation

29

1

Texture, Structure and Visual Matching
Alessandro Chiuso Georgios Georgiadis Stefano Soatto

F

Abstract—We formalize a notion of “visual texture” as a sample of a
process that exhibits some form of statistical regularity. We characterize
it in terms of approximate sufficient statistics and show how the definition
yields inference algorithms for compression (sufficient dimensional-
ity reduction), extrapolation/inpainting, segmentation, rectification, and
shape analysis that achieve or exceed state-of-the-art performance.
More importantly, however, we provide an analytical framework to study
textures and their relation to other early-vision operations such as
correspondence. We prove that sparse features, that result from co-
variant detection, are the complement of textures, so the image can
be partitioned into two qualitatively different processes at each scale.
Such a decomposition, however, requires a proper sampling condition
to be satisfied, which can only be decided given multiple images of the
same scene. The manuscript is intended to have pedagogical value, as
it points out the relationship between the notion of texture and other
low-level vision operations, in the context of visual recognition.

1 INTRODUCTION

1.1 Related work
This manuscript formalizes the notion of texture and
clarifies its relationship to other low-level vision oper-
ations. As such it relates to a vast body of work, so we
are conscious that we may be omitting work on texture
analysis ([12] and references therein), texture segmenta-
tion ([5] and refs.), perception of texture ([11] and refs.),
and texture synthesis and mapping ([3] and refs.). We
do not address the phenomenology that gives rise to a
texture (e.g., “3-D textures” generated by the interplay
of shape and illumination [16] vs. “decal textures” due
to the radiance of the surfaces) and the computational
algorithms used to pool the statistics (e.g., patch-based
[18] vs. statistical vs. geometric [?] methods). We refer the
reader to more extensive treatises, surveys and edited
volumes such as [4] for a broader view of the texture
literature.

Figure 1 shows examples of so-called “regular tex-
tures,” regions of images where some elementary structure
is repeated more or less regularly. Such “elementary
texture element” is sometimes called a “texton” [7]. The
images in Figure 2, however, do not contain any such
elementary structure, but still exhibit some kind of spa-
tial regularity, and are often called “stochastic textures.”
As the name suggests, there is an unpredictable element:
What is spatially regular, or even homogeneous, is some
kind of ensemble property of the image.

Figures 5 (top) and 3 show examples of what would be
perceived as “texture” in a way that is no different than
Fig. 1 or 2, even though there is no translation-invariant

Fig. 1. Regular textures

Fig. 2. Stochastic textures

statistic to be found. Indeed, these images would look
no different than those in Fig. 1-2 if we could apply a
transformation to either the domain (Fig. 5) or the range
(Fig. 3) of the images that somehow “undoes” or inverts
transformations undergone by the scene in the image-
formation process.

In Fig. 5 (bottom) one can clearly resolve “structures”
in the scene (branches, trunks, etc.) in the portion of the

1

Texture, Structure and Visual Matching
Alessandro Chiuso Georgios Georgiadis Stefano Soatto

F

Abstract—We formalize a notion of “visual texture” as a sample of a
process that exhibits some form of statistical regularity. We characterize
it in terms of approximate sufficient statistics and show how the definition
yields inference algorithms for compression (sufficient dimensional-
ity reduction), extrapolation/inpainting, segmentation, rectification, and
shape analysis that achieve or exceed state-of-the-art performance.
More importantly, however, we provide an analytical framework to study
textures and their relation to other early-vision operations such as
correspondence. We prove that sparse features, that result from co-
variant detection, are the complement of textures, so the image can
be partitioned into two qualitatively different processes at each scale.
Such a decomposition, however, requires a proper sampling condition
to be satisfied, which can only be decided given multiple images of the
same scene. The manuscript is intended to have pedagogical value, as
it points out the relationship between the notion of texture and other
low-level vision operations, in the context of visual recognition.

1 INTRODUCTION

1.1 Related work
This manuscript formalizes the notion of texture and
clarifies its relationship to other low-level vision oper-
ations. As such it relates to a vast body of work, so we
are conscious that we may be omitting work on texture
analysis ([12] and references therein), texture segmenta-
tion ([5] and refs.), perception of texture ([11] and refs.),
and texture synthesis and mapping ([3] and refs.). We
do not address the phenomenology that gives rise to a
texture (e.g., “3-D textures” generated by the interplay
of shape and illumination [16] vs. “decal textures” due
to the radiance of the surfaces) and the computational
algorithms used to pool the statistics (e.g., patch-based
[18] vs. statistical vs. geometric [?] methods). We refer the
reader to more extensive treatises, surveys and edited
volumes such as [4] for a broader view of the texture
literature.

Figure 1 shows examples of so-called “regular tex-
tures,” regions of images where some elementary structure
is repeated more or less regularly. Such “elementary
texture element” is sometimes called a “texton” [7]. The
images in Figure 2, however, do not contain any such
elementary structure, but still exhibit some kind of spa-
tial regularity, and are often called “stochastic textures.”
As the name suggests, there is an unpredictable element:
What is spatially regular, or even homogeneous, is some
kind of ensemble property of the image.

Figures 5 (top) and 3 show examples of what would be
perceived as “texture” in a way that is no different than
Fig. 1 or 2, even though there is no translation-invariant

Fig. 1. Regular textures

Fig. 2. Stochastic textures

statistic to be found. Indeed, these images would look
no different than those in Fig. 1-2 if we could apply a
transformation to either the domain (Fig. 5) or the range
(Fig. 3) of the images that somehow “undoes” or inverts
transformations undergone by the scene in the image-
formation process.

In Fig. 5 (bottom) one can clearly resolve “structures”
in the scene (branches, trunks, etc.) in the portion of the

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2

Fig. 3. Range-deformed textures

test the definition

8

Fig. 4. Testing the definition of texture. Both images
satisfy the definition of texture, despite the one on the left
being often called “textureless.” Random-dot displays en-
able binocular correspondence [6], which seems to contra-
dict Theorem ??. This conundrum is solved by observing
that scale, composed with quantization, is not a group,
and by introducing the notion of “proper sampling” in
Section ??.

Fig. 5. Interplay of texture and scale. Whether some-
thing is a texture depends on scale, and “structures” can
appear and disappear across scales. Such “transitions”
can be established in an ad-hoc manner using complexity
measures as in Figure ??, or they can be decided by
analyzing multiple views of the same scene through a
notion of proper sampling introduced in Section ??.

scene that is closest to the image. However, as the trees
recede further, more of their branches are binned into
one pixel, and therefore we cannot resolve them from the
image. All we can ascertain from the image is ensemble
properties of the scene, i.e. statistics, that lead us towards
the notion of texture.

The well-known consequence is that “texture” is not
a property of the scene, but instead a property of the
imaging conditions under which the data are captured,
i.e., a property of the nuisances of the data formation
process. So, the same tree in Fig. 5 can be described as
a texture or a collection of “structures” depending on
how close we are to it, the resolution of the camera,
the resolving power of the lens, the amount of noise
etc. This phenomenon has prompted some authors to
characterize the “transition” from structure to texture
based on image statistics. That is, to determine the
scale at which one can go from describing the image
as a collection of individual structures and their spa-
tial arrangement, to describing ensemble properties and
their stationary statistics. This, however, presents several
problems. First, this transition is not unique. As is well-
known [9], two-dimensional scale-spaces do not enjoy a
causality principle, so it is possible for a neighborhood
of a point in the image to be described as “structure” at
a certain scale, then texture at coarser scales, then again
structure at yet coarser scales, and so on.1 This is clearly
visible in Fig. ??, where the entropy profile in a growing
region around a point on the image follows a “staircase”
behavior, with statistics being invariant (texture) in the
flat regions, marked by sharp transitions (structures) oc-
curring multiple times as the scale increases. The second
problem is that such transitions are not a property of
the scene, or even a joint property of the scene and
the vantage point, as they change with the resolution
of the image, the optics of the lens, the quantization and
pre-processing algorithm applied by the digital camera
etc. (the same scene, viewed from the same vantage
point, presents different transitions depending on the
characteristics of the lens and the sensor that captured
the image).

More importantly, however, this phenomenon brings
into question the role of texture analysis for recog-
nition. In fact, in many vision-based decision tasks –
detection, recognition, categorization, and more general
correspondence – the vantage point, quantization phe-
nomena, optical characteristics etc. are nuisance factors
that affect the image but have nothing to do with the
underlying scene that we are trying to recognize. Any
intermediate decision that is not related to the task, as
for instance the unique partitioning of the image into
texture and structure, entails a loss of performance in
any decision downstream. This stems directly from the
Data Processing Inequality ([2] Theorem 2.8.1), and Rao
and Blackwell’s theorem [13], page 88. Instead, in an

1. Note that if images had infinite resolution, such quantization
artifacts would never arise, as one could always zoom in close enough
to resolve any structure in the radiance.

Figure 3: Interplay of texture and scale. Whether something is a texture depends on scale, and
“structures” can appear and disappear across scales. Such “transitions” can be established in an ad-hoc
manner using complexity measures as in Figure ??, or they can be decided by analyzing multiple
views of the same scene through a notion of proper sampling introduced in Section ??.

ascertain from the image is ensemble properties of the scene, i.e. statistics, that lead us towards the
notion of texture.

2 Background

We consider digital images {Iij}(i,j)=1:(N,M) 2 RM⇥N and their continuous abstractions I : D ⇢
R2 ! R; x 7! I(x). A sample Iij is obtained by averaging the function I(·) on a neighborhood B
of the point xij 2 D of size ✏ > 0. In general, Iij = I(xij) + nij where nij = nij(I) is the (spatial)
quantization error.

We consider groups of transformations of the sensor plane, g : D ⇢ R2 ! R2; x 7! g(x), and
denote their induced action on the image by I � g

.
= I(g(x)). The simplest instance is the translation

group, represented by a translation vector T 2 R2, via g(x)
.
= x + T , so that I � g(x)

.
= I(x + T).

Each group element g 2 G determines a “frame,” for instance in the Euclidean plane, the translation
group determines a reference frame with origin at the point T 2 R2. Similarly, an element of the
Euclidean group g = (R, T) 2 SE(2), where R is a rotation matrix (RT R = I and det(R) = 1),
determines a reference frame with origin at T and coordinate axes aligned with the columns of R.
All the considerations below apply to other finite-dimensional Lie groups of the plane including
Euclidean, similarity, affine, and projective. Some considerations also apply to (infinite-dimensional)
planar diffeomorphisms, but with some technical complications.

2.1 Structures

Canonization is a constructive process to eliminate the effects of a group G acting on the data (the set
of images I). The group organizes the data into orbits; a covariant detector identifies a canonical
element of each orbit that co-varies with the group; in the corresponding (moving) frame, the data is
then independent of the group.

A differentiable functional : I ⇥ G ! R; (I, g) 7! (I, g) is said to be local, with effective
support ✏ if its value at g only depends on a neighborhood of the image of size ✏ > 0, up to a residual
that is smaller than the mean quantization error. For instance, for a translational frame g, if we call
I|B✏(g)

an image that is identical to I in a neighborhood of size ✏ centered at position g ⌘ T , and zero
otherwise, then (I|B✏(g)

, g) = (I, g) + ñ, with |ñ|  1
NM

P
i,j |nij |. For instance, a functional

that evaluates the image at a pixel g ⌘ T = x 2 B✏(xij), is local with effective support ✏. For groups
other than translation, we consider the image in the reference frame determined by g, or equivalently
consider the “transformed image” I � g�1.

4

2

Fig. 3. Range-deformed textures

test the definition

8

Fig. 4. Testing the definition of texture. Both images
satisfy the definition of texture, despite the one on the left
being often called “textureless.” Random-dot displays en-
able binocular correspondence [6], which seems to contra-
dict Theorem ??. This conundrum is solved by observing
that scale, composed with quantization, is not a group,
and by introducing the notion of “proper sampling” in
Section ??.

Fig. 5. Interplay of texture and scale. Whether some-
thing is a texture depends on scale, and “structures” can
appear and disappear across scales. Such “transitions”
can be established in an ad-hoc manner using complexity
measures as in Figure ??, or they can be decided by
analyzing multiple views of the same scene through a
notion of proper sampling introduced in Section ??.

scene that is closest to the image. However, as the trees
recede further, more of their branches are binned into
one pixel, and therefore we cannot resolve them from the
image. All we can ascertain from the image is ensemble
properties of the scene, i.e. statistics, that lead us towards
the notion of texture.

The well-known consequence is that “texture” is not
a property of the scene, but instead a property of the
imaging conditions under which the data are captured,
i.e., a property of the nuisances of the data formation
process. So, the same tree in Fig. 5 can be described as
a texture or a collection of “structures” depending on
how close we are to it, the resolution of the camera,
the resolving power of the lens, the amount of noise
etc. This phenomenon has prompted some authors to
characterize the “transition” from structure to texture
based on image statistics. That is, to determine the
scale at which one can go from describing the image
as a collection of individual structures and their spa-
tial arrangement, to describing ensemble properties and
their stationary statistics. This, however, presents several
problems. First, this transition is not unique. As is well-
known [9], two-dimensional scale-spaces do not enjoy a
causality principle, so it is possible for a neighborhood
of a point in the image to be described as “structure” at
a certain scale, then texture at coarser scales, then again
structure at yet coarser scales, and so on.1 This is clearly
visible in Fig. ??, where the entropy profile in a growing
region around a point on the image follows a “staircase”
behavior, with statistics being invariant (texture) in the
flat regions, marked by sharp transitions (structures) oc-
curring multiple times as the scale increases. The second
problem is that such transitions are not a property of
the scene, or even a joint property of the scene and
the vantage point, as they change with the resolution
of the image, the optics of the lens, the quantization and
pre-processing algorithm applied by the digital camera
etc. (the same scene, viewed from the same vantage
point, presents different transitions depending on the
characteristics of the lens and the sensor that captured
the image).

More importantly, however, this phenomenon brings
into question the role of texture analysis for recog-
nition. In fact, in many vision-based decision tasks –
detection, recognition, categorization, and more general
correspondence – the vantage point, quantization phe-
nomena, optical characteristics etc. are nuisance factors
that affect the image but have nothing to do with the
underlying scene that we are trying to recognize. Any
intermediate decision that is not related to the task, as
for instance the unique partitioning of the image into
texture and structure, entails a loss of performance in
any decision downstream. This stems directly from the
Data Processing Inequality ([2] Theorem 2.8.1), and Rao
and Blackwell’s theorem [13], page 88. Instead, in an

1. Note that if images had infinite resolution, such quantization
artifacts would never arise, as one could always zoom in close enough
to resolve any structure in the radiance.

Figure 3.2: Regular, stochastic, domain- and range-deformed textures.

for synthesis using the texture optimization technique [KEB05], (iii) extend this

framework to video using a causal scheme, similar to [EL99] and show results for

multiple time-varying textures, (iv) synthesize multiple textures simultaneously on

video without explicitly computing a segmentation map, unlike [XBY09], which

is useful for hole-filling and video compression, (see Fig. 3.1), and (v) propose a

criterion (“Texture Qualitative Criterion” (TQC)) that measures structural and

statistical dissimilarity between textures.

3.1 Related work

Our work relates to texture analysis ([MM02, LSP05, KEM09, LLH04] and refer-

ences therein), perception ([MP90] and refs.), synthesis and mapping ([EL99] and

refs.). We do not address phenomenology (e.g. “3-D textures” generated by the

interplay of shape and illumination [SH98] vs. “decal textures” due to radiance)

and the algorithms used to pool statistics (e.g. patch-based [VZ03], statistical

[GG84], geometric [Zuc76] methods). We refer the reader to [Har05] for a more

extensive survey.

Some work has been done in summarizing images (epitome [JFK03] and jigsaw

[KWR06]) and video [CFJ08, WSI07]. These methods do not handle textures

explicitly and as a result, their reconstructed textures suffer. [JFK03, KWR06,

30

CFJ08] are also not able to extend textures to larger domains, since they rely on

an explicit mapping between the input image/video and the summarization. Other

schemes aim to compact the spectral energy into few coefficients [BAC96, Fen03,

MP12]. [WWO08] compresses regular textures, but fails with stochastic ones.

Our work models textures explicitly and hence achieves both high compression

rates and high quality synthesis results.

In video texture synthesis, there are several works ranging from pixel-based

([BEL01], [WL00]), to patch-based [KSE03], to parametric [DCW03]. Our work

falls in the patch-based category.

3.2 Textures

“Visual textures” are regions of images that exhibit spatial regularity. To charac-

terize them, we use the notions of Markovianity, stationarity and ergodicity. We

denote an image by I : ∆ → R+, where ∆ = (1, 1) : (X, Y) is the pixel lattice.

Statistics, or “features”, map the image onto some vector space and local features

operate on a subset of the image domain. Formally, a local statistic is defined on

ω ⊂ ∆ as a function θω : {I : ∆→ R+} → RK ; I 7→ θω(I) that only depends on

the values of the image I(x, y) for (x, y) ∈ ω. A distribution on I, dP (I) induces

a distribution on θω via dP (θω)
.
= dP (θω(I)).

In order to exploit spatial predictability, we leverage on the existence of a

statistic that is sufficient to perform the prediction. This is captured by the notion

of Markovianity. We say that a process {I} is Markovian if every set Π ⊂ ∆

admits a neighborhood N(Π) and a statistic θN(Π) that makes I(Π) independent

of the “outside” I(Πc). Πc is the complement of Π in a region Ω ⊂ ∆, where Ω

31

corresponds to the texture region (see Fig. 3.3):

I(Π) ⊥ I(Πc) | θN(Π). (3.1)

This condition makes the process {I} with measure dP (I) a Markov Random

Field (MRF), and establishes θN(Π) as a sufficient statistic for I(Π). In general,

N(Π) could correspond to many regions, for instance ω = Ω\Π. In describing a

texture, we seek the smallest ω, in the sense of minimum area (“scale”) |ω| = r,

so the corresponding θω is a minimal (Markov) sufficient statistic. Of particular

interest is the case when such a neighborhood is spatially homogeneous1, as is the

case in a stationary MRF.

A process {I} is stationary if statistics are translation invariant. More formally,

{I} is stationary in θω if,

E(θω) = E(θω+T), T ∈ R2 | ω + T ⊂ Ω. (3.2)

Such condition may be satisfied only after transformations of the image domain

and range (as in deformed textures, Fig. 3.2)2. Note that unless the process is

defined on the entire plane, one has to restrict the set of T to allowable translations

to ensure Eq. (3.2) is computed where θω+T is defined.

To test whether a process is stationary from just one sample, we have to

assume it is ergodic, meaning that the sample statistics converge to the ensemble

ones:
1

N

N∑

i=1

θω+Ti
a. s.−→ E(θω), (3.4)

1Spatially homogeneous means that ω = ω(Π) can be written in terms of neighborhoods
of each pixel x = (x, y) within Π, and the smallest Markov neighborhood of a pixel, ω(x), is
translation invariant, i.e., its shape does not change as we translate x: ω(x + T) = ω(x) + T .

2For a group G acting on the domain of I via I(x, y) 7→ I(g(x, y)) and a group H acting on
the range via I(x, y) 7→ h(I(x, y)), we say that the process {I} is G−H stationary in θg(ω) if,

E(θg(ω)(h(I))) = E(θg(ω)+T (h(I))), T ∈ R2 | ω + T ⊂ Ω. (3.3)

Such transformations can be inferred by a model selection criterion. Textures can be rectified
by applying the inverse action g−1, h−1 to the data.

32

for all admissible Ti. Given Ω, we can test whether the process {I} is stationary

in this region, by approximating statistics θω using samples in a neighborhood

ω̄ ⊂ Ω. The larger the size of ω̄, the better the approximation of the statistics,

but the lower the compression achieved. Therefore, we seek the smallest possible

ω̄ that allows inferring the statistics “sufficiently well”. Assuming that such ω̄

is found, we can test for stationarity by translating it and testing whether the

resulting statistics remain “sufficiently constant”. This, however, can only be

tested for admissible translations that keep ω̄ within Ω.

We define a texture as a region Ω of an image I that can be rectified into

a sample of a stochastic process that is stationary, ergodic and Markovian. A

texture is parametrized by the following quantities: (a) The Markov neighborhood

ω and its Markov scale r = |ω|, (b) the stationarity region ω̄ and its stationarity

scale σ = |ω̄|, (c) the minimal sufficient statistic θω defined on ω, and (d) Ω, the

texture region. Note that ω ⊂ ω̄ ⊂ Ω.

3.2.1 Texture Representation

We initially assume (and later relax) that Ω = ∆. The representation should have

smaller complexity than the collection of pixel values in Ω and allow extrapolation

beyond Ω, traits not shared by [CMK14, SM13], but the latter can be used to

further reduce complexity in classification applications.

In a non-parametric setting, θω is a collection of sample image values. ω̄
.
=

⋃
λ=1,...,Λ ωλ is the union of Λ sample regions ωλ, each a Markov neighborhood

of a pixel with coordinates (xλ, yλ). Collectively the neighborhoods capture

the variability of the texture. Thus, a texture is represented by (a) ωλ, chosen

as a square for all λ with unknown area r, (b) ω̄, to be determined and (c)

θω̄
.
= {θωλ}Λ

λ=1
.
= {I(ωλ)}Λ

λ=1 (where I(ωλ)
.
= {I(x, y), ∀(x, y) ∈ ωλ}) that is

33

Figure 3.3: Left: A subset of the image domain, Π, with its local neighborhood. Ω

denotes the domain of the texture. Right: Texture representation θω̄ and samples drawn

from Ω.

uniquely specified by the image given r and ωλ (Fig. 3.3).

Complexity controls the cardinality of ω̄. The best we can do is to select all

patches ω from Ω and store them as ω̄. When complexity is fixed, however, for

instance via a compression parameter ξ, we can only store ξ × (X × Y) values,

rather than (X × Y). This determines the cardinality of ω̄. The larger r = |ωλ|,
the fewer the patches that can be stored in a given ω̄. There is a natural tradeoff

where too small an r fails to capture the local neighborhood of the texture (Markov

sufficient statistic) and too large an r fails to capture the statistical variability, as

too few patches ωλ can be contained in a given ω̄. Both have detrimental effects

on extrapolating a texture beyond Ω, which we discuss next.

3.3 Inference

In this section we discuss how to infer a (minimal) representation {ω, ω̄, θω̄} from

a given texture image {Ω, I}, and how to synthesize a novel texture image Î from

34

Algorithm 1: Texture Synthesis

1 Initialize Î(0) to a random texture;

2 Set νωs = 1 for s = 1, . . . , S and jmax = 20, b = 0.7 ;

3 for j = 1, . . . , jmax do

4 for s = 1, . . . , S do

5 ω
(j)
s = nrst nghbr(θω̄, ω̄, Î

(j−1)(ω̂s));

6 Let Î(j) = arg minÎ E(Î , {ω(j)
s }Ss=1});

7 νω̂s = ‖Î(j)(ω̂s)− I(ω
(j)
s)‖b−2 for s = 1, . . . , S ;

8 if (∀ω̂s ∈ Ω̂S : Î(j)(ω̂s) = Î(j−1)(ω̂s)) then

break;

Function nrst nghbr(θω̄, ω̄, Î(ω̂))

9 Let s be the index of the the nearest neighbor of Î(ω̂) in θω̄ ;

10 Retrieve ωs within ω̄ ;

11 return ωs ;

it. We start from the latter since the algorithm that infers the representation

utilizes the synthesis procedure.

3.3.1 Image Texture Synthesis

Given a representation {ω, ω̄, θω̄}, we can synthesize novel instances of the texture

by sampling from dP (I(ω)) within ω̄. This is straightforward in a non-parametric

setting, where the representation is itself a collection of samples. One can simply

select neighborhoods ωλ within ω̄, and populate a new lattice with patches

I(ωλ) ensuring compatibility along patch boundaries and intersections. Efros et.

al. [EL99] proposed a causal sampling scheme that satisfies such compatibility

35

conditions, but fails to respect the Markov structure of the underlying process

(their I(ωλ) are not a Markov sufficient statistic), which causes “blocky” artifacts

and “drift.” Instead, given {ω, ω̄, θω̄}, we synthesize textures by choosing a

subset of neighborhoods from ω̄ that satisfy the compatibility conditions and by

construction also respect the Markov structure. We perform this selection and

simultaneously also infer Î. We do so by first initializing Î at random. We select

neighborhoods ω̂s on a grid on the domain of the synthesized texture every
√
r

4
.

We let Ω̂S = {ω̂s}Ss=1 denote the collection of the selected ω̂s, ΩS = {ωs}Ss=1 denote

the chosen neighborhoods within ω̄ and I(ωs) ∈ θω̄ denote the nearest neighbor of

Î(ω̂s). We minimize with respect to {ωs}Ss=1 and Î the function [KEB05]:

E(Î , {ωs}Ss=1) =
∑

ω̂s∈Ω̂S

νω̂s‖Î(ω̂s)− I(ωs)‖2. (3.5)

The procedure to minimize the above energy function is given in Alg. 1.

An illustration of the quantities involved is shown in Fig. 3.4. νω̂s , defined in

Alg. 1, is used to reduce the effect of outliers, as done typically in iteratively

re-weighted least squares [KEB05]. The process is performed in a multiscale

fashion, by repeating the procedure over 3 neighborhood sizes: |ω̂s|, | ω̂s2 |, | ω̂s4 |. By

first synthesizing at scale |ω̂s| = r, we capture the Markov structure of the texture.

Subsequent repetitions refine the synthesized texture by adding finer details. We

also repeat this process over a number of different output image sizes.

3.3.2 Video Texture Synthesis

The texture synthesis algorithm in [KEB05] was extended to temporal textures,

which however relied on the availability of optical flow. Unfortunately, optical flow

is expensive to store, as encoding it is more costly than encoding the original images.

We propose a temporal texture synthesis algorithm that relies on neighborhoods

36

!1
!2

!̂1

!̂2

!̂S

Î

⌦̂

!S

Synthesized Texture
Texture Representation

!̄

✓!̄

Figure 3.4: Image Texture Synthesis. For each neighborhood ω̂s in the synthesized

texture, we find its nearest neighbor in ω̄.

ωλ that extend in time.

We take the input video {I t}Tt=1, and compute a compact representation θω̄t ,

from which we synthesize {Î t}Tt=1. In this section we assume we have θω̄t and

in Sec. 3.3.5 we explain how to infer it. We re-define all quantities to have

domains that extend in time. To reduce computational complexity we fix the

temporal extension of the neighborhoods to 2 frames, although longer choices

are possible. Hence for t > 1, ωtλ ⊂ (1, 1, t− 1) : (X, Y, t), which makes it a 3-D

neighborhood and ω̄ becomes ω̄t
.
=
⋃
λ=1,...,Λ ω

t
λ, a union of 3-D neighborhoods.

I t(ωtλ) is therefore defined on the 3-D lattice and θω̄t
.
= {I t(ωt1), . . . , I t(ωtΛ)}. For

t = 1, ωt=1
λ , ω̄t=1 and θω̄t=1 remain 2-D.

We initialize the output video, Î t, to a random texture and first synthesize

frame Î t=1 using Alg.1. We then let t ← t + 1 and synthesize frame t using a

causal approach, similar to [EL99], by ensuring that the compatibility conditions

with frame t− 1 are satisfied: For each ω̂ts ∈ Ω̂t
S (where Ωt

S corresponds to the set

of selected ω̂ts on the 3-D grid of the synthesized frames, extending temporally

37

t = 1 t = 2 t = 3

t = 1 t = 2

={ , }

Extract
representations

Synthesize video

(Not actual,!
illustration !

only)
={ , } ={ , }

Input!
Video

Initialization

Output!
Video

t = 1

t = 1

t = 2

t = 2

t = 3t = 1

t = 2 t = 3
t = 2t = 1

✓!̄1 ✓!̄2 ✓!̄3

Figure 3.5: Temporal Texture Synthesis. We forward-synthesize the video from the

texture representations of each frame using the previously synthesized frame as a

boundary condition.

in [t − 1, t]), we mask (i.e., discount) the portion of the neighborhood that is

in frame t (the unsynthesized part) and seek its nearest neighbor, ωts, within

θω̄t on only the unmasked region (i.e., on only the region that has already been

synthesized). Once we get the nearest neighbors of all ω̂ts, we fix them and do not

allow them to change. This is done in order to achieve compatibility with the

already synthesized textures. We then unmask all neighborhoods and use them

to minimize the energy function in Eq. (3.5) (see Fig. 3.5).

38

3.3.3 Synthesizing Multiple Textures Simultaneously

We demonstrate how multiple textures can be synthesized simultaneously for

video and images without computing a segmentation map. This is useful for

applications such as video compression (where {ω, ω̄, θω̄} can be used to synthesize

the textures of the input video) or for image processing tasks such as hole-filling

and frame interpolation.

To place the textures in their corresponding locations in a video (or image)

we implicitly define their boundaries by partitioning each frame into two types of

regions: Textures and their complementary region type, structures. Structures

are regions of images that trigger isolated responses of a feature detector. These

include blobs, corners, edges, junctions and other sparse features. We determine

which regions are structures, by using a feature point tracker such as [LK81].

Partitioning images or video into two types of regions has been previously

proposed by several works ([GZW03a, SCV02, BVS03]) using a single image. In

our framework, if a region with a scale ε triggers an isolated response of a feature

detector (i.e., it is a structure at scale ε), then the underlying process is, by

definition, not stationary at the scale |ω̄| = ε. Therefore, it is not a texture. It

also implies that any region ω̄ of size ε = |ω̄| is not sufficient to predict the image

outside that region. This of course does not prevent the region from being a

texture at a scale σ >> ε. Within a region σ there may be multiple frames of size ε,

spatially distributed in a way that is stationary/Markovian. Vice-versa, if a region

of an image is a texture with σ = |ω̄|, it cannot have a unique (isolated) extremum

within ω̄. Of course, it could have multiple extrema, each isolated within a region

of size ε << σ. We conclude that, for any given scale of observation σ, a region

ω̄ with |ω̄| = σ is either a structure or a texture.

39

One must impose boundary conditions so that the texture regions fill around

structure regions seamlessly. To perform texture extrapolation, we follow an

approach similar to the one used for video texture synthesis. The video is

initialized to a random texture. At locations where the structures were detected

and tracked, we place the actual image (intensity) values. We select ω̂ts ∈ Ω̂t
S like

before, on a 3-D grid of the synthesized frames, but with the added restriction

that ω̂ts needs to have at least one pixel in the texture domain (otherwise it is

entirely determined i.e., it is a structure). The patches that are entirely lying

in the texture domain need to be synthesized. The patches that straddle the

texture/structure partition are used as boundary conditions and are synthesized

causally.

We mask as before the portion of each neighborhood, ω̂ts, that is in frame t

and is part of the texture domain (since this is the only unknown, unsynthesized

part of the neighborhood). We then proceed as in the temporal texture synthesis

algorithm: We find the nearest neighbor of the unmasked region within θω̄t , fix

it and do not allow it to change. Finally we unmask all the neighborhoods and

use them to minimize the energy function in Eq. (3.5). Note that for t = 1, if ω̂ts

lies entirely in the texture domain, its nearest neighbor is permitted to change

through the iterations, similar to Alg.1.

Finally, in addition to the structures, we could also use ω̄t to provide additional

boundary conditions. Placing I(ωtλ) for ωtλ ⊂ ω̄t on the image domain allows us to

avoid explicitly synthesizing on these locations. These are already stored in θω̄t ,

so we only need to additionally store the location of their central pixels. Examples

of synthesizing multiple textures simultaneously are shown in Fig. 3.13.

40

3.3.4 Texture Qualitative Criterion

To evaluate the quality of the texture synthesis algorithm, we need a criterion

that measures the similarity of the input, I, and synthesized, Î, textures. The

peak signal-to-noise ratio (PSNR) is typically used as the criterion for evaluating

the quality of a reconstruction. However, when the final user is the human

visual system, PSNR is known to be a poor criterion, especially for textures,

as imperceptible differences can cause large PSNR changes. Works such as

[PH12, WBS04, TH94, SB06] operate on general images and do not exploit

properties of textures. To address this issue, we introduce the Texture Qualitative

Criterion (TQC), represented by ETQC , which is composed of two terms. The

first one, E1(Î , I), penalizes structural dissimilarity, whereas E2(Î , I) penalizes

statistical dissimilarity. We let ω̂s/ωi be patches within Ω̂/Ω, the domains of Î/I,

and their nearest neighbors be ωs/ω̂i, which are selected within the domains of

I/Î. I/Î can correspond to the input/synthesized textures, or simply two textures,

which we wish to compare.

For E1(Î , I), we select NS patches ω̂s ⊂ Ω̂ and NI patches ωi ⊂ Ω on a dense

grid in the domain of the synthesized and input images respectively. We let

Î(ω̂s) and I(ωi) correspond to the intensity values in the synthesized and input

neighborhoods respectively. We use the patches selected to compute the following

cost function:

E1(Î , I) =
1

2NI

NI∑

i=1

1

|ωi|
‖Î(ω̂i)− I(ωi)‖2+

1

2NS

NS∑

s=1

1

|ω̂s|
‖Î(ω̂s)− I(ωs)‖2. (3.6)

Note that this expression resembles Eq. (3.5), with one change: There is an added

summation in Eq. (3.6), which is over patches in the input image. The need of

41

Figure 3.6: The first term in Eq. (3.6) identifies global range/domain transformations

of the input texture (left images). The second term identifies erroneous texture synthesis

results (right images).

both of these terms has also been noted by others [WHZ08] and is illustrated

in Fig. 3.6. The first term identifies domain/range deformations of the input

texture, whereas the second term identifies artifacts in the synthesized texture.

We compute this cost function over multiple scales (typically 3) and average over

all scales. This makes the cost function more robust, as it is able to compute

similarity of patches at multiple scales.

E2(Î , I) is based on a distance between histograms of filter responses, which

allows us to capture the statistical differences between two textures:

E2(Î , I) =
1

L

L∑

l=1

‖φ(gl(I))− φ(gl(Î))‖χ2 , (3.7)

where ‖.‖χ2 is the χ2 distance, φ(.) is a histogram of filter response values and

gl(I), l = 1, . . . , L are the responses of the L filters. We chose the filter bank of

[LM01] 3. Finally, TQC is given by:

ETQC(Î , I) = E1(Î , I) + E2(Î , I). (3.8)

3The filter bank consists of 48 filters: first and second derivates of Gaussians at 6 orientations
and 3 scales, 8 Laplacian of Gaussian and 4 Gaussian filters. We used the default parameters of
[LM01].

42

In
pu

t
Re

pr
es

en
ta
tio

n
Sy

nt
he

si
ze

d

In
pu

t
Re

pr
es

en
ta
tio

n
Sy

nt
he

si
ze

d

Figure 3.7: Texture representation, θω̄. Top: Input textures. Middle: Inferred rep-

resentations. Bottom: Synthesized textures from the inferred representation. Right

pair of images: Complexity ξ determines the representational power of θω̄. Increas-

ing the number of stored samples, allows the representation to capture the domain

transformation.

3.3.5 Inference of Texture Representation

Given a complexity constraint ξ, we have a bound on the number, Λ
.
= Λ(r), of

samples, ωλ, that can be stored in ω̄, which depends on r, the scale of ωλ. To

estimate r, the inference algorithm involves two levels of computation. The first

level involves fixing rcand, a candidate of r, and computing which samples ωλ ⊂ Ω

should be stored in ω̄. This computation is repeated for a finite number of rcand.

To choose r̂, an estimate of r, we use TQC to rank the representations and choose

the best one according to this ranking. In this section, we describe this procedure

in greater detail.

For each rcand, we use Alg.1 (see Sec. 3.3.1) (or its variant if the input is a

video) to synthesize a novel instance of the texture at just one scale, rcand. Upon

convergence, for each ω̂s there is an ωs (its nearest neighbor), that is assigned to

it. The set ΩS = {ωs}Ss=1 denotes the collection of nearest neighbors within Ω and

it is the entire data that the algorithm needs to synthesize the texture.

43

Tr
ue

 C
la

ss

Precision@R

1 2 3 4 50.2

0.4

0.6

0.8

1

1.2

R

Pr
ec

is
io

n

ETQF
E1
E2
PSNR
SSIM
VIF

Predicted Class

ETQF E1 E2 PSNR SSIM V IF

Figure 3.8: Left: Confusion tables for six competing methods. Right: Precision of

methods for various values of retrieved nearest neighbors.

However, due to ξ, we need to choose which Λ ≤ S samples from ΩS we store.

To do so, we run the k-medians algorithm [BMS97], with an `2 distance and ΩS

as the input. The algorithm chooses the Λ cluster centers, ωλcand , from the set ΩS

that minimize the distance of all samples with their clusters. In this sense, they

are the most “representative” samples of the underlying process. Since the cluster

centers are samples from the distribution, if rcand is the true Markov neighborhood

scale, then the cluster centers approximate the variability of the texture. The

cluster centers form ω̄cand
.
=
⋃
λ=1,...,Λ ωλcand , which we can use to compute θω̄cand .

Using θω̄cand , we re-synthesize the textures at multiple scales according to Sec. 3.3.1.

We repeat this procedure for all rcand. We choose r̂ (an estimate of r) to be the

scale that minimizes T QC. This ensures that the chosen r̂ synthesizes the most

similar texture among all rcand and hence captures best the Markov neighborhood

structure. We discretize the space of r̂ to [42, 82] ∪ {k × 162}Kk=1, where K is

bounded by the scale of Ω. When Ω is unknown, we can bound the space of r̂

to the image size, although empirically it can be set to a much lower value (e.g.

128× 128 for 640× 480 images). Once r̂ is selected, we retrieve the corresponding

estimates of ω̄ and θω̄ computed at scale r̂. For video, we repeat this process on

each frame independently.

44

3.3.6 Extending the Representation to Multiple Scales

To use the T QC, we need to assume that there is only one texture in the

image domain. This poses issues when inferring the representation θω̄ and when

evaluating the quality of reconstruction for images with more than one texture.

To circumvent that, we partition the image domain into smaller regions and infer

the texture representations on each one of these independently. We partitioned

640× 480 frames into regions of 128× 128, which in general gave us good results.

Since there is still no guarantee that there will not be more than one texture

in each of these subsets, we allow the texture representation to be slightly more

flexible: we allow ωλ to take any of 3 different scales. Based on the restriction

imposed by ξ, we distribute the available number of samples, Λ, to samples at

3 different scales i.e., (Λr,Λr/2,Λr/4), computed so that they satisfy the same

complexity constraint. Since multiple choices would achieve this condition, we try

all of them sequentially.

The above approach leads to forming a representation that is multi-scale:

θω̄ = {θω̄r , θω̄r/2 , θω̄r/4}, where the subscript on ω̄ denotes the scales of the samples

ωλ that belong to that particular ω̄. Like before, we repeat this process for various

candidates of r and choose the best one according to T QC. Note that synthesis

can still take place on the whole image domain and it is independent of the

partitioning done for the inference of the texture representation.

3.4 Experiments

Texture Representation Analysis. To qualitatively evaluate the representa-

tional power of our scheme, we show in Fig. 3.7 a number of examples. With

45

Figure 3.9: Texture dataset: 10 randomly selected examples.

the exception of the example on the right, the algorithm picked in all others to

represent the texture with just one sample, Λ = 1. r = 96 × 96 for textures 1,

2, 4 and r = 112× 112 for texture 3. This is due to two reasons: (i) by storing

ωλ with large r, we can select neighborhoods at smaller scales within the stored

ωλ in texture synthesis, (ii) the textures shown with the exception of the last

one, do not exhibit significant variation to require more than one sample to be

stored. The first two exhibit little variation. In the next two, the representation

captures the photometric variation by simply selecting (correctly) an ωλ that

exhibits this variation. The texture on the right exhibits a domain deformation.

The algorithm is unable to identify this variability with Λ = 1 and r = 96× 96

(second to last column), but with more samples stored (rightmost column), it

is able to do so. In that case, Λ = 5 and r = 64 × 64. In Fig. 3.13, we show

inferred representations for video. In such video sequences the structures provide

boundary conditions between textures and the stored samples allow localization

of the various transformations occurring on the textures.

Texture Qualitative Criterion. To evaluate TQC, we have constructed a

46

Figure 3.10: Texture Qualitative Function (TQC): Ordered synthesized textures using

TQC. Left: Original textures. Right: Synthesized textures, left being the most similar

to the input texture.

dataset4, made out of 61 classes of textures, with 10 samples in each class (10

randomly selected examples of classes are shown in Fig. 3.9). Each sample is

compared against the other 609 texture images using six different quantities:

ETQC , E1, E2, PSNR, SSIM [WBS04] and V IF [SB06]. For each image we

retrieve R nearest neighbors using each of the six quantities and identify the class

they belong to. We compute confusion matrices and show the result for R = 5 in

Fig. 3.8, where the results are accumulated over all images. Furthermore, we plot

the precision of each of the six methods also in Fig. 3.8, for R = 1, . . . , 5. ETQC

4http://vision.ucla.edu/~giorgos/cvpr2015/

47

Increasing E2 Increasing E2

False
Ordering

Correct
Ordering

Increasing ETQC Increasing ETQC

Figure 3.11: Two examples where E2 fails and ETQC succeeds in ordering the synthe-

sized textures correctly with respect to the input texture. Images with a red outline

have been incorrectly ordered. The issue arises mainly in regular textures. The regions

within the purple ellipses are major sources of error.

performs slightly better than E2 and significantly better than the other methods.

Note that E1 is equivalent to [WHZ08], without using a control map.

To qualitatively evaluate TQC, we synthesized a number of textures using a

varying ξ and ω. We used TQC to order the synthesized textures and we show

the ordered results in Fig. 3.10. The biggest benefit of ETQC over E2 is shown

in Fig. 3.11. E2 fails to detect artifacts in the synthesized textures, especially in

regular ones, since the pooled statistics do not reveal any inconsistencies. On the

other hand, ETQC is able to identify these cases, since samples in the synthesized

texture are artifacts of synthesis and hence are not present in the input texture.

Texture Synthesis. To evaluate the temporal extension of the synthesis algo-

rithm, we decouple the representation from the synthesis procedure by letting

ξ = 1. We initialize the output to a random video of the same length and size

as the input. We use 20 frame long video input sequences to produce a novel

instance of the texture (Fig. 3.12). Synthesized textures capture the statistics of

48

Figure 3.12: Temporal texture synthesis. Synthesizing a novel instance of a texture in

a video sequence. The first frame of a 20-frame long input video sequence is shown in

the top row. 1st, 10th and 20th synthesized frames are shown below each input image.

the inputs and are temporally consistent.

Video Hole-Filling for Multiple Textures.

We synthesize multiple textures in the first 5 frames of 12 videos from the

MOSEG dataset[BM10] at two different compression ratios using the inferred

representations. We store the intensity values in 8-bit unsigned integers and the

locations of the centers of ω in 16-bit unsigned integers. The space required to

store the representation is Ξ(ω̄) = Λ× r × 8 + Λ× 2× 16. The space required to

store the texture regions without using the representation is Ξ(Ω) = 8× |Ω|. We

let the compression ratio be ξ = Ξ(ω̄)
Ξ(Ω)

. In Fig. 3.13, we show the last frame of the

synthesized videos at ξ = 40%. The results show that we can successfully compress

textures in video using our representation; during decoding, the original video

can be recovered by hole-filling. Note that we have also overlaid the detected

structures on each frame. We control the number of feature points detected

and hence the structure/texture partition, by empirically adjusting the detection

49

Figure 3.13: Video texture synthesis in natural images (Hole-filling). From left to right:

(i) Last frame (5th) of input video, (ii) Structure regions, (iii) Structure / Texture

regions, (iv) Synthesized frame (our result), (v) Video Epitome [CFJ08] (zoom in to

view details).

threshold to retain in general long and stable tracks. In the same figure, we also

show the results from [CFJ08], the most relevant work to ours, for the same target

compression. We use their publicly available code and we have done our best to

optimize the parameters to get the best results possible. Since their approach does

not explicitly model textures, their method fails in synthesizing them well. For

example, in the second sequence, the sky is only barely part of the “known” region

and while our method is able to extrapolate and fill in the rest of it by synthesis,

[CFJ08] is not able to do so from their summarization (epitome). In Table 3.1 we

show the value of TQC for two target compression levels used in the experiments

(ξ = 40% and ξ = 60%) for each of the 12 video sequences. Examining the

50

Seq-1 Seq-2 Seq-3 Seq-4 Seq-5 Seq-6

358(61%) 430(61%) 707(59%) 499(64%) 435(63%) 708(60%)

359(41%) 429(40%) 703(40%) 501(41%) 437(41%) 708(38%)

Seq-7 Seq-8 Seq-9 Seq-10 Seq-11 Seq-12

618(55%) 480(56%) 371(63%) 557(54%) 206(58%) 452(61%)

616(37%) 482(38%) 372(41%) 557(37%) 207(38%) 451(40%)

Table 3.1: Video texture synthesis evaluation. TQC for each of the 12 sequences on the

texture regions (smaller is better). In brackets, we show the corresponding compression

percentage achieved.

synthesized video sequences, it can be observed that the spatial artifacts for both

methods are comparable (hence the values of TQC are approximately the same),

but the temporal artifacts are significantly more for the higher compressed video,

which TQC does not capture. An extension of this work would be to compute

TQC on 3D samples, rather than 2D. For additional results, please refer to the

project website4.

Future Challenges. When the system is used at high compression ratios, syn-

thesizing large holes becomes challenging. Extending our coarse-to-fine approach

to hole-filling could improve the results. In addition, to infer the representations

in these videos, our algorithm requires an amount of time that is in the order

of hours. Synthesis of frames typically takes 5-10 minutes. These times are

comparable to similar methods [CFJ08, KSE03]. The reported time refers to a

MATLAB implementation on an Intel 2.4 GHz dual core processor machine. In

future work, we plan to find efficient approximations to speed up inference.

51

3.5 Discussion

A texture region exhibits a form of spatial regularity, hence it lends itself to spatial

image compression techniques. We presented a new texture representation that

requires considerably less space to store than the input texture, while at the same

time it retains many important characteristics: it can still be used as input to

texture classification tasks and image and video texture synthesis. We presented

a causal video compression scheme that utilizes the proposed representation and

demonstrated how this can be used for hole-filling and texture compression in

video. Finally, we proposed a new criterion to compare two textures that measures

structural and statistical dissimilarity.

52

CHAPTER 4

Texture Compression

The notion of texture has a long history in visual perception, computer vision,

computer graphics, computational geometry, content-based image retrieval, all

with slightly different characterizations. In Chapter 3, we introduced and defined

“Visual Textures”. In this chapter, we extend the definition so that domain

and range transformations of the image are considered. Textures are defined in

the context of lossy compression. To be more precise, we accept a loss, even

a significant one, relative to the task of reproducing an exact replica of the

original texture, as reflected for instance in the PSNR of their pixel-wise difference.

However, ideally we would like our scheme to be lossless with respect to the task of

perception by humans. Unfortunately, perceptual similarity is difficult to measure,

and even more difficult to formalize analytically. Therefore, we postulate that

images of textures are samples from some underlying stochastic process, and that

perceptual similarity relates to the similarity between such processes. Similarity

could be measured by some kind of distance between minimal sufficient statistics,

if these could be computed. In particular, we assume that if two processes

have the same sufficient statistics, the samples they generate are perceptually

indistinguishable. This postulate is not unreasonable, provided we are willing

to consider higher-order statistics, as the case of second-order [Jul62, Jul81] has

long been refuted in psychophysical experiments [MP90]. So, if we could infer the

minimal sufficient statistics of the underlying process from one sample of it (an

53

image), we would encode and store them, and then at decoding just generate a

random sample. This would be, by postulate, a (perceptually) lossless compression

scheme.

Unfortunately, finite-dimensional minimal sufficient statistics exist only in

special cases [JC73], and even then, they cannot be inferred from a finite sample.

Therefore, our goal is to devise a lossy compression scheme by inferring approximate

sufficient statistics of the underlying process, where fidelity is traded off with

sample size. Since the “true” underlying process is not known, we cannot measure

fidelity by comparing the estimated statistics with the true ones, but we can

evaluate it by comparing samples generated from them. Therefore, ultimately

the evaluation of a texture compression scheme has to be performed empirically,

which we do in Sect. 4.4.

4.1 Prior related work and contributions

Texture compression relates to a vast literature on texture analysis ([MM02]

and refs.), perception ([MP90] and refs.), synthesis and mapping ([EL99] and

refs.), texture phenomenology ([SH98] and refs.), exemplar/patch based methods

(structural vs. geometric vs. probabilistic [VZ03, Har05, ZWM98]) that we cannot

realistically review in the limited scope of this paper. We refer the reader to

[XMX08] for an overview. Our work is also naturally related to the Minimum

Description Length (MDL) principle [Ris78], where the aim is to exploit regularities

in the data to achieve compression. Whereas in traditional implementations of

MDL and lossy MDL [MRY11, Bou11] the approach taken is to compress pixel

values, in our work we aim to “compress” the source that generates them, i.e.

the scene. Other traditional texture compression schemes typically involve a

transformation stage (e.g. by applying the Discrete Cosine Transform (DCT) or

54

the Discrete Wavelet Transform (DWT) to the image) which aims to compact the

spectral energy into a few coefficients. These coefficients are then quantized and

typically the quantization steps are set by taking into account some perceptual

metric [Fen03, MP12].

Despite a wealth of work, however, there are relatively few attempts to clearly

define and analytically characterize textures. In this work, we provide a definition

based on standard concepts from stochastic processes such as stationarity, ergodic-

ity, Markovianity (Sect. 4.2-4.3). The definition naturally lends itself to inference

algorithms for encoding a texture, by inferring approximate sufficient statistics

(Sect. 4.3.2), and decoding using non-parametric sampling, via a straightforward

modification of [KEB05] that captures the correct Markov structure inferred from

the data. We characterize the performance of our compression scheme empirically,

and point to some challenges in the determination of the (multiple) intrinsic scales

of textures. We assume that the domain where a texture region is defined is

given to us, and focus on its compression (coding/decoding), as opposed to its

segmentation from the non-texture region. Consequently, all examples we use in

our experiments include images that contain exclusively texture regions.

4.2 Background

A (spatially) quantized image {Iij}(i,j)=1:(N,M) ∈ RM×N is obtained by averaging

a function I : D ⊂ R2 → R; x 7→ I(x) on a neighborhood of xij ∈ D of size

ε > 0, Bε(xij): Iij = 1
|Bε|

∫
Bε(xij) I(x)dx where |B| is the area of B. In general,

Iij = I(xij) + nij where nij = nij(I) is the quantization error.

In Chapter 3 we introduced and defined the notion of “Visual Textures”. In

this chapter, we focus on how range and domain transformations of the image

55

could affect the definitions introduced earlier. To do so, we re-introduce the main

concepts (stationarity, ergodicity and Markovianity), but this time focus on the

transformations of interest. As a result, certain concepts should appear familiar

to the reader.

4.2.1 Stationarity

We interpret the quantized image as a sample (realization) from a process {I}
distributed according to a certain (unknown) distribution I ∼ dP (I). While the

probabilistic description of this process can be technically problematic, sampling

from it is straightforward, as it corresponds to measuring pixel values in certain

subsets of the image domain. Consider a subset ω ⊂ Z2, with cardinality |ω|, and

functions φ (statistics, or “features”) that map image values onto a vector space

RW . A “local” feature φω
.
= φ(I(ω)) operates on a restriction of the image to a

subset ω ⊂ Z2, I(ω)
.
= {I(x), x ∈ ω}. A probability distribution dP (I) on the

set of images induces a distribution on the feature: dP (φω) = dP (φ(I(ω)). We

also consider a group of planar transformations g ∈ G, with g : R2 → R2. These

represent “deformations” or “distortions” of the image due to, for instance, a

change of vantage point, or a deformation of the scene [SPV09a]. Given a group

G, a set ω and a function φω, we say that the distribution dP (I) is G-stationary

in φω if there exists a g ∈ G such that E(φg(ω)) is translation-invariant, that is

E(φg(ω)) = E(φg(ω)+T), T ∈ R2 (4.1)

where g(ω) = {g(x) | x ∈ ω}∩Z2 and g(ω)+T = {g(x)+T | x ∈ ω}∩Z2. If (4.1)

is satisfied only for T that belong to a discrete subgroup of planar translations

(Frieze symmetries, see [LTL05]), then the process is cyclo-stationary.

In practice, the image is only defined on a bounded domain, so we introduce

the notion of local stationarity: Given ω and a superset ω̄ ⊃ ω, dP (I) is locally

56

stationary in ω̄ if (4.1) is satisfied not for all T ∈ R2, but only for those such

that g(ω) + T ⊂ ω̄. We call such T ’s admissible, and σ = |ω̄| the stationarity

scale. Note that the value of the statistic φω remains unchanged if we consider any

superset of ω; in particular, we have φω = φω̄. The largest admissible region where

the stationarity assumption is satisfied will be called Ω. Note that ω ⊂ ω̄ ⊂ Ω.

Stationarity implies that there is an underlying statistical model which de-

scribes the image in the region Ω. However, when it comes to performing statistical

inference, one has to ensure that this model can be consistently inferred from

data. This requires linking the sample properties to the ensemble (probabilistic)

properties, and is captured by the notion of ergodicity.

4.2.2 Ergodicity

A stationary process is ergodic if sample averages converge to ensemble averages

(expectations):

1

N

N∑

i=1

φg(ω)+Ti
a. s.−→ E(φg(ω)) (4.2)

for all Ti ∈ R2. Stationarity can then be tested by comparing samples of I in

g(ω) to admissible samples in the transformed domain g(ω) + Ti. The maximum

number of different samples N is bounded by the area of ω̄, so for any finite |ω̄|
there will be a threshold, θ = θ(|ω̄|) to decide whether the process is stationary,

yielding an empirical stationarity test. Note that the sole fact of performing an

empirical stationarity test from one image, implicitly requires that the underlying

process is ergodic. The fact that a statistic is stationary does not imply that it is

sufficiently informative in the sense of enabling the statistical characterization of

the process. To that end, we introduce the notion of Markovianity below.

57

4.2.3 Markovianity and sufficient reduction

Once established that a process is stationary, hence spatially predictable, we can

inquire on the existence of a statistic that is sufficient to perform the prediction.

We say that a process is Markovian if every set A ⊂ Ω admits a neighborhood

N (A), such that a statistic φN (A) computed in N (A) makes I(A) independent of

the “outside” I(Ac) , where Ac is the complement of A in Ω:

I(A) ⊥ I(Ac) | φN (A). (4.3)

This makes the process I with measure dP (I) a Markov Random Field (MRF). Of

particular interest is the case when the neighborhood structure N (A) is induced

by a set ωx
.
= N (x) which satisfies the property ωx+T

.
= N (x + T) = ωx + T =

N (x) + T , ∀T ∈ Z2, so that the neighborhood structure is spatially homogeneous.

Of course any stationary Markov random field satisfies this property. We shall

denote by Nω(A) the neighborhood structure induced by ω where the subscript x

has been dropped for obvious reasons. Note that the region ω and the statistic φω

that we use to define Markovianity are not the same we used to define stationarity

in the previous section. We are overloading the notation to avoid introducing too

many new symbols.

Remark 1 (Markov neighborhoods) The “neighborhood” ω\x of x consists

of all pixels that are connected to x according to the Markov structure of the

underlying process, and should not be confused with the set of pixels that are

connected to x according to the lattice structure of the image (e.g the 4-connected

or 8-connected neighbors). While it may be possible to predict the value of a pixel

x given its lattice neighbors, this does not imply that such a neighborhood captures

the Markov structure. For instance, consider a checkerboard image: The value of

a pixel (black or white) can be predicted given its lattice neighbors, but this does

58

not mean that |ω| = 8 pixels, as this neighborhood does not allow predicting the

value of pixels outside ω. In this case, the correct ω must include at least one

period of the underlying signal. In fact condition (4.3) has a global nature and

it is equivalent to I(x) ⊥ I(ωc) | φω−x once the neighborhood structure has been

fixed.

Equation (4.3) establishes I(Nω(A)) as a (Bayesian) sufficient statistic for I(A).

In general, there will be many regions ω that satisfy this condition; the one with

the smallest area |ω| = r, is a minimal sufficient statistic. From now on, we will

refer to φω as the minimal Markov sufficient statistic.

4.3 Textures

A texture is a region of an image that can be rectified into a sample of a stochastic

process of a planar lattice that is locally stationary, ergodic and Markovian. More

precisely, assuming for simplicity the trivial (translation) group g(x) = x+ T , a

region Ω ⊂ D ⊂ R2 of an image is a texture at scale σ > 0 if there exist regions

ω ⊂ ω̄ ⊂ Ω such that I is a realization of a stationary (Eq. 4.1), ergodic (Eq.

4.2), Markovian process (Eq. 4.3) locally within Ω, with I(ω) a Markov sufficient

statistic and σ = |ω̄| the stationarity scale.

If the group G is non-trivial, we say that a region Ω is a texture relative

to the group G at scale σ > 0 if there exists a group element g ∈ G such that

I ◦ g−1 is a texture relative to the translation group. Then, the Markov sufficient

statistic is I ◦ g−1(ω) and the stationarity scale σ/|Jg|, where the denominator is

the determinant of the Jacobian of G computed at g. The group element g can

be found by canonization [Soa10]; for the specific case of the projective group,

[ZLG10] provides a simple rank-minimization-based procedure (Fig. 4.1).

59

Figure 4.1: Affine and projective textures and their rectified versions. The transfor-

mation g can be determined in pre-processing via canonization [ZLG10, Soa10], or can

be described to parametrize the statistic φω and inferred as part of the compression

process (i.e. in the search for ω).

4.3.1 Characterization

Let us assume, for the moment, that the group G is trivial (planar translations).

Recall that the definition of the Markov sufficient statistic implies that ω is such

that, ∀A ⊂ Ω,

I(A) ⊥ I(Ω− A)︸ ︷︷ ︸
‘‘outside′′

| I(Nω(A))︸ ︷︷ ︸
‘‘inside′′

(4.4)

or, in terms of Kullback-Liebler divergence between conditional distributions:

KL (p(I(A)|I(Nω(A))); p(I(A)|I(Ω− A))) = 0 (4.5)

and yet again in terms of conditional entropy, H(I(A)|I(Nω(A))) = H(I(A)|I(Ω−
A)). Without a complexity constraint, there are many regions ω that do so; we

therefore seek for the smallest one, by solving

ω̂(β) = arg min
ω

[
supA∈ΩH(I(A)|I(Nω(A))) +

1

β
|ω|
]
. (4.6)

Note that this is a consequence of the Markovian assumption; it can be shown

that the solution ω̂(β) to (4.6), which can be seen as a version of the Information

Bottleneck principle [TPB99], converges to the sufficient statistics ω with β “large

enough” (say β → ∞). As a special case, we can choose ω to belong to a

parametric class of functions, for instance square neighborhoods of x, excluding x

60

itself, of a certain size σ, Bσ(x), so the optimization above is only with respect to

the positive scalar σ. In practice, we do not know the probabilistic description

of the random field, so the best we can do is to approximate the entropy in

(4.6) from sample data H(I(A)|I(Nω(A))) ' − 1
M

∑M
i=1 log p(I(Ai)|I(Nω(Ai))),

where Nω(Ai) is a neighborhood of Ai
.
= A + Ti ⊂ Ω. Here p can either be

finitely parameterized or specified in a non-parametric fashion by samples in a

region ω̄, with ω ⊂ ω̄ ⊂ Ω. For instance, given ω̄ we can draw K regions of

size r = |ω|. The larger the r, the smaller the K, so we can write K = K(r, σ)

with σ = |ω̄|. For instance, if ω̄ is a square neighborhood of side σ, then

K = 4rσ − 4r2 + 1. To compute log p(I(A)|I(Nω(A))), one can “synthesize”

the image in the set A, given fixed values of I(Nω(A)) which can be done by

a nonparametric texture synthesis algorithm (see e.g. [EL99] and section ??)

for fixed ω and ω̄. If we call Î(A) the “synthesized” texture in A, this yields

an estimator of the entropy Ĥ(I(A)|I(Nω(A)))
.
= log

(
1
M

∑M
i=1 d(I(Ai), Î(Ai))

)
.

Note that this function depends on both r = |ω| as well as σ = |ω̄|. The larger

ω̄ the better the estimate, so we must trade off σ. However, the size of ω is

automatically traded off in K(r, σ): Choosing r = σ will yield only one sample

K = 1, and therefore the prediction error d(I(A), Î(A)) will be large. Similarly,

too small r will cause many false matches of I(ω − {x})) with poor predictive

power for I(x). The tradeoff will naturally settle for 1 < r < σ. Therefore, we

can simultaneously infer both σ and r by minimizing the sample version of (4.6)

with a complexity cost on σ = |ω̄|:

r̂, σ̂ = arg min
r=|ω|,σ=|ω̄|

Ĥ(I(A)|I(Nω(A))) +
1

β
|ω̄|. (4.7)

Note that both ω and ω̄ will be necessary for extrapolation: ω defines the Markov

neighborhood used for comparing samples, and ω̄ defines the region where such

samples are sought to approximate the probability distribution p(I(A)|I(Nω(A))).

61

4.3.2 Inference

The definition of texture in terms of MRF presents a challenge for compression,

since the inference of ω requires a search over all possible subsets of Ω and its

separators (Remark 1). To infer ω in a computationally viable way, we propose

an alternative which is based on [BNS10]. Because of the stationarity assumption,

and given that we have chosen to parametrize ω with squared neighborhoods,

we simply need to infer its size |ω|. Consider therefore a region of growing size

|ωk| = 1, 2, . . . , n and any statistic φ computed in ωk, φ(I(ωk)). Its entropy as a

function of k will follow a “staircase” behavior [BNS10], where the local minima

correspond to ki = |ω|. This is consistent with the fact that textures exist at

multiple scales (see Fig. 4.2). For the purpose of compression, we are interested in

the smallest ki. This algorithm is just an approximation, as the staircase behavior

is implied by stationarity and Markovianity, but there may be pathological cases

where the entropy of certain statistics can exhibit staircase behavior and yet the

region does not satisfy the definition of texture. Finally, given ω we can then infer

ω̄ using Alg. 2.

Algorithm 2: Algorithm for inferring ω̄

Initialize a set R = ∅, and a threshold ε

Sample N patches {xi : i = 1, . . . N} of size |ω| from Ω

foreach xi do

Compute D = d(I(xi), Î(xi)) where Î(xi) is the Nearest Neighbor of I(xi)

among the rest N − 1 patches

if D < ε then

R := R ∪ xi
Let ω̄ be a squared sampled region from Ω of size |R|

We use Alg. 1 for texture synthesis.

62

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

E
nt

ro
py

Size

Multiscale Textures

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Cloth

Figure 4.2: Multiscale analysis of textures. Top row, left to right: Texture “within”

texture. Entropy plot. Synthesized texture at small scale, synthesized texture at a

higher scale. Bottom row: Different textures appearing at different scales. The regions

surrounded by the blue rectangles are the textures at the smaller scale (shown in the

entropy plot) and the regions surround by the red rectangles are the textures at the

larger scale. For each scale we show both ω and ω̄ (with the bigger rectangle of each color

corresponding to the respective ω̄). It can be seen that the smaller scale legitimately

captures the texture of a single rope thread, but fails to capture the texture of the rug

that consists of woven threads. That is captured by the larger region (right).

4.4 Experiments

We show results of our texture compression algorithm in Fig.4.4. In the odd

columns we show the input textures (Ω is the entire image domain). Within Ω we

show ω and ω̄ inferred by our algorithm by indicating their boundaries with red

boxes. On the even columns we show the synthesized textures from ω̄ using our

extrapolation algorithm. Qualitatively, the original textures are successfully re-

63

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

E
nt

ro
py

Size

Grass

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

E
nt

ro
py

Size

Greencells

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Metallic texture

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Stochastic Texture

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

E
nt

ro
py

Size

Rope

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Cloth

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Brick Wall

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Rocks

Figure 4.3: Entropy plots for the 8 textures shown in Fig 4.4. The black line indicates

the scale (specifically the size of the side) of ω selected by our algorithm.

synthesized, which shows that ω̄ is sufficient to capture the characteristics of that

texture within the threshold used for inference. To determine |ω| we calculate the

sampled entropy at each scale and we use an automatic scale selection algorithm:

we calculate, µe, the mean value of entropy in the last k scales (in these experiments

k = 10) and the standard deviation, se, of the entropies calculated at all scales.

We set a threshold λ = µe− se
6

and look for the smallest scale at which the entropy

exceeds λ.

To determine ω̄, according to Sec 4.3.2, we need to accept “representatives”

that are “close” to each patch sampled from Ω. In these experiments, we sample

3000 patches from Ω (which is related to the parameter θ = θ(|ω̄|) mentioned in

Sec. 4.2.2) and accept as a representative any patch that is less than 3 × 10−3

(per pixel distance) away from its nearest neighbor.

In Fig. 4.3 we show the entropy plots of the histograms of pixel values for the

same textures. In black we show the location detected by our algorithm as the

scale of ω. These sizes correspond to the small red boxes in Fig 4.4. Although the

64

Figure 4.4: Odd Columns: Input texture. The large red box indicates the inferred scale

of ω̄. The smaller red box indicates the inferred scale of ω. Even Columns: Synthesized

textures from ω̄. The perceptual characteristics of the textures have been captured,

indicating that I(ω̄) is indeed a Markov sufficient statistic, at least sufficient for the

purpose of perceptual comparison.

histogram is a vey crude first-order statistic, it exhibits the anticipated behavior,

and is sufficient to capture the scaling properties of the texture.

To further illustrate the multi scale nature of textures, we calculate the entropy

of the intensity values as a function of increasing size of ω for a synthetic texture

(Fig. 4.2). A synthetic configuration of red lines on black background is surrounded

65

by another texture exhibiting different spatial characteristics. The entropy of this

image is shown in Fig. 4.2. It can be observed that two plateaus are formed, one

corresponding to the first texture and the second corresponding to the combination

of the two textures. Synthesizing at these two scales, one can generate different

types of textures. Another example is shown in the bottom row of the same figure.

Here, the same texture is exhibiting different repetitive patterns at different scales.

The synthesized textures at these two different scales (indicated in the entropy

plot) are shown on the bottom right.

As expected, the quality of the synthesized texture depends critically on the size

of ω̄, and so does storage cost. In the next experiment, we attempt to characterize

such a “rate-distortion” tradeoff. Distortion is not easy to measure since the

goal is to create samples that are perceptually indistinguishable, but could differ

significantly at the pixel level. Therefore, standard distortion figures such as

PSNR are of limited use. Standard perceptual similarity scores, such as SSIM

[WBS04], similarly fall short of capturing the perceived quality of the synthesized

textures (see Fig. 4.5). We therefore filter the synthesized and original textures

by a filter bank [LM01]; then, we calculate the histograms of the filter responses

and used the χ2 distance to measure the distance between each filter response of

the two textures. We take the texture (dis-)similarity to be the averaged result

over all distances for each histogram pair (see Fig. 4.5). The distance decreases

as the size of ω̄ increases indicating that the input and synthesized textures are

becoming increasingly similar.

Fig. 4.6 illustrates the role of the group G in compression. The texture is

compressed and re-synthesized without canonization of the rectifying homography.

This shows that the Markov sufficient statistic is fairly large. Compressing the

rectified texture, and then transforming the synthesized texture by the inverse of

66

50 60 70 80 90 100 110 120 130 140 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
 E

rr
or

Size

Grass

50 60 70 80 90 100 110 120 130 140 150
0

0.2

0.4

0.6

0.8

1

1.2

D
S

S
IM

Size

Grass

40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

R
M

S
 E

rr
or

Size

Metallic Texture

40 50 60 70 80 90
0

0.5

1

1.5

D
S

S
IM

Size

Metallic Texture

Figure 4.5: Rate-Distortion curves. Top: Mean distance of filter response histograms

against ω̄ size. At each point, we show the synthesized texture given that scale of ω̄.

At the top right we show the original texture. The qualitative behavior, as expected,

indicates that larger size of ω̄ yields synthesized textures that are increasingly similar

to the original sample. Bottom: Plots of RMS Error and DSSIM [WBS04] as a function

of the size of ω̄. Standard metrics used for measuring the fidelity of a reconstructed

image fail to capture the perceptual quality.

the canonizing transformation, yields a perceptually similar reconstruction at a

smaller coding cost, even after accounting for the 8 numbers necessary to encode

the homography.

In terms of computational complexity, for the experimental setup discussed

here, inferring ω takes around 1.15 seconds; inferring ω̄ takes around 89 seconds,

and synthesizing the texture at a size of 256× 256 takes around 2− 3 minutes.

The computational time to infer ω̄ depends on θ. The more patches sampled, the

67

Figure 4.6: The texture in Fig. 4.1 is compressed and re-synthesized without prior

rectification. (first and second figures). The texture is then rectified, compressed,

re-synthesized and retransformed back with the inverse of the canonizing transfor-

mation (third and fourth figures). The two approaches achieve approximately the

same perceptual quality but the rectified texture does so at a lower complexity cost

(|ω̄rectified| ' | ω̄original4 |).

slower it is, but given that there are fast methods for finding Nearest Neighbors,

this can be done efficiently. The runtimes reported for all experiments refer to our

non-optimized implementations in MATLAB for an INTEL 2.4 GHz dual core

processor machine.

4.5 Discussion

We have presented a definition of textures in terms of standard concepts from

stochastic processes such as stationarity, ergodicity, and Markovianity. We have

then proposed algorithms to infer the constitutive elements of a texture, ω and

ω̄, directly derived from the definitions. The inference yields a collection of

different choices of Markov sufficient statistics, reflecting the multi-scale nature of

textures. Such statistics can then be used for compression purposes: the encoding

is given by the statistics I(ω̄), and decoding is performed by texture synthesis via

non-parametric sampling. Quantifying the performance of a texture compression

scheme is non-trivial due to the absence of a universally accepted perceptual

distortion score. We have used a score that quantitatively captures the perceived

68

quality of the synthesized textures, and characterized the performance-complexity

tradeoff empirically. In this work we have assumed that Ω (the stationarity

domain) was given to us, or that equivalently the entire image or image patch

is occupied by the texture. Next we will engage in the inference of Ω (texture

segmentation).

69

CHAPTER 5

Texture Segmentation

Image segmentation concerns partitioning the domain of an image into coherent

regions. We assume these are regions of space that project onto simply connected

regions in the image, where some statistic is locally stationary and sufficiently

different from its surroundings. Because of scaling phenomena in natural images,

even the same statistic can exhibit rather different stationarity properties when

aggregated in regions of different size. Thus, there is no single “correct” solution

to segmentation, which remains an undecidable problem. Nevertheless, it is of

great practical significance in a number of applications such as image editing,

content-based retrieval and medical imaging.

In this paper, we exploit the robustness properties of region-based segmen-

tation methods and mitigate their sensitivity to clutter by performing multiple

bimodal/unilateral (foreground/background) partitions starting from multiple

seeds. These can then be aggregated using a number of voting schemes or affinity

clustering to produce a desired number of segments. Furthermore, we also put

an emphasis on the issue of scale. Specifically, by adapting the scale parameter

to the data we can employ a simpler local representation that does not require a

multi-scale filter bank to capture the local statistics. An overview of our algorithm

is shown in Fig. 5.1.

Because of the absence of ground truth, it has become customary to evaluate

segmentation algorithms against human annotations. The most common evalua-

70

Figure 5.1: An overview of our method. Figure/ground partitions (middle) are

computed for a number of seed regions (top, shown in purple). We then aggregate

the boundary information deduced from each one of the partitions to produce the

final segmentation (bottom). Boundaries of partitions are shown in red.

tion schemes compare a single segmentation against multiple (often inconsistent)

human annotations. We compare our algorithm using this evaluation scheme with

other approaches. We rank first in two common metrics, and second in the other

one. Furthermore, we report sample results for a variety of natural images.

71

5.1 Related Work

Image segmentation in general has been approached in a variety of ways. Although

the literature is too vast for us to review here, in broad strokes, these could be

subdivided into contour-based or region-based methods. Arbelaez et al. [AMF11]

falls in the first category. It first detects contours using brightness, color and

texture cues and subsequently uses the Oriented Watershed Transform (OWT) to

produce region boundaries. [RMY09] is a region based technique, in which the

partition of the image domain is determined by greedily merging small coherent

regions, superpixels, to minimize a cost function that depends on encoding regions

and boundaries. Merging regions increases the coding cost of the combined region

but removes boundaries and hence the optimal result is a trade-off of the two.

Since regions are modeled by mixtures of Gaussians, the approach fails on non-

GMM textures. Comaniciu et al. [CM02] partitions the image domain by finding

modes of a probability density function and assigning each pixel to one of these

modes. In [FH04], a graph is constructed, where nodes are pixels and edges

measure dissimilarity between them. Regions are merged if an edge connecting the

two regions is smaller than a certain threshold that depends on the two regions.

Cour et al. [CBS05] is a generalization of [SM97], which is a multiscale spectral

image segmentation algorithm. Affinity matrices at multiple scales are set up and

the output image segmentation is a result of seeking a solution that is consistent

across all scales, a requirement that is enforced by design constraints.

A number of works approach image segmentation through supervised learning.

Carreira et al. [CS10] also compute figure/ground hypotheses. Once computed,

figure/ground partitions are ranked using ground truth annotations. A model

is trained that is used to produce one segmentation. A similar approach is also

72

taken by [EH10]. [WT13] and [RS13] proposed methods that grow regions from

an over-segmentation, but unlike us, both [WT13] and [RS13] require priors.

Furthermore, [WT13] also requires class-specific shape priors aiming to produce a

semantic image labeling, whereas we use a bottom-up approach, hence it is not

directly comparable to our work.

Region-based binary (figure/ground) partition methods, for instance [CV01],

seek to partition the image into two regions, by evolving a boundary model

(represented, for instance, with a signed-distance function) in such a way that

some statistics – computed in each of the two regions – are “maximally divergent”

in some sense, for instance measured by the Kullback-Leibler divergence between

color histograms. Thus, the two regions are “in competition” [ZLY95], and because

of the bi-modal partition, the resulting optimization is convex [CE05]. However,

while it is often the case that some object of interest or some part of it (which

we may want to call “foreground”) is well represented by the mode of a sample

distribution of pixel values, this is often not the case for everything else (which

we may want to collectively call “background” or “clutter”). Whatever (usually

simple) statistics are computed in the background, once they are aggregated

over the entire background, they lose discriminative power. This problem is well

known and dates back to the Mumford-Shah functional and its application in

medical imaging [TYW00]. This has been traditionally approached by performing

multi-modal segmentation, which involved a far more complex logical combination

of level set functions, which was no longer a convex problem. However, it is

often the case that the statistics of the object of interest are sufficiently different

from its immediate background [SSY10]. Thus we wish to leverage on the power

and robustness of region-based methods to segment multiple possible foregrounds

from their (local) background, and then perform a robust aggregation scheme to

arrive at a global partition. Aggregation of multiple partitions has been found to

73

improve localization compared to single segmentation approaches [ME07].

Donoser et al. [DUH09] follows a similar approach to us, by generating several

figure/ground segmentations and then aggregating them to produce the final

segmentation result. The algorithm first selects seed regions for the figure/ground

segmentations by detecting salient regions in the image. To obtain the fig-

ure/ground segmentations a weighed total variation segmentation method is used,

which minimizes a convex energy functional. Where the various segmentations

are overlapping, they are combined using a maximum likelihood decision to deter-

mine the region membership of these pixels. The decision is made on estimated

probability maps which are calculated during the figure/ground segmentations.

This method suffers from a number of limitations: (i) Gaussian models are built

for foreground/background regions that are used to determine the segmentations

and the probability map, so it fails when non-Gaussian regions are encountered,

(ii) the salient region detection is often not sufficient, since it is necessary as a

post-processing step to initialize new seeds for unlabeled pixels, and (iii) all small

unassigned regions are given a membership using an ad-hoc rule. Instead, we take

a non-parametric approach, by representing regions with their histograms, which

allows us to handle a larger set of regions that are not necessarily Gaussian. We

avoid the salient region detection step, which is unreliable, and instead start from

all possible (or unlabeled) seed regions, which in our formulation correspond to

superpixels.

Once the figure/ground segmentations are computed, our algorithm aggregates

them in one affinity matrix, which is then used in NCuts [SM97] to produce

the final segmentation. In this sense, our work is also related to others that

make use of the NCuts formulation. [MVM11] uses a weighted average of the

Normalized Laplacian eigenvectors to correlate eigenvectors with a seed vector. In

74

this way, it allows them to incorporate top-down priors or user input to produce

a segmentation of the image. Our work differs from this, and also from [YS01],

since it does not require any prior knowledge.

In our work we first formulate the problem of foreground/background partition

and show how we can segment out the foreground region for individual seed

regions. We then describe how these multiple foreground/background partitions

can be combined to create an affinity matrix for pairwise region relationships,

which is used to obtain the final segmentation.

5.2 Foreground / Background Partition

In order to benefit from the robustness and simplicity of region-based segmentation

methods, but without making stringent assumptions on the clutter distribution, we

employ a unilateral segmentation scheme starting from a “seed region”, si(0) ⊂ D,

where D is the domain of an image I, that is assigned to be foreground by

fiat. On each iteration t, its boundary is evolved, driven by a distance between

color distributions with its local neighborhood ni(t) ⊂ D, until convergence.

We call the final, connected region “foreground” and denote it by si(∞). We

initialize the algorithm by partitioning D into superpixels by over-segmenting

the image into a large number of small and coherent regions [RM03, MRE04]

and use the superpixels as “seed regions”. We use the publicly available code

from [MRE04] with N.sp = 200. At the end of this stage, we are left with a

collection of foreground/background partitions initialized from each superpixel,

which are combined together using the technique explained in Sec. 5.4 to form

one segmentation.

The notation I(si(t))
.
= {Ipq,∀xpq ∈ si(t)}, where xpq is a pixel at location

75

(p, q) ∈ D, denotes the ensemble of intensity values in the subset si(t). For color

images, we indicate the channel index, k, using the notation I(k). We assume

that the values {Ipq} are in the range [0, 1], possibly after contrast normalization.

Furthermore, note that we define the local neighborhood ni(t) to consist of first

and second-order superpixel neighbors of si(t). First order neighbors of a region

si(t) are superpixels that are directly connected with si(t) (i.e. share a boundary).

Similarly, second order neighbors of si(t) are superpixels that are directly connected

to its first order neighbors. As si(t) expands through the iterations, ni(t) adapts

to the analogous local neighborhood of the current foreground region.

We choose as local discriminative statistics the normalized color histograms,

φksi(t)
.
= φ(I(k)(si(t))), φ

k
ni

(t)
.
= φ(I(k)(ni(t))) in si(t) and ni(t) respectively for

each of the k = 1, . . . , K channels (where K = 1 for grayscale and K = 3 for

colored images), as a non-parametric estimate of the (marginal) distributions of

intensity values in each color band. To determine the foreground region si(∞),

we first define a function that captures the quality of a foreground/background

segmentation:

Q(si(t)) =
K∑

k=1

‖φ(I(k)(si(t)))− φ(I(k)(ni(t)))‖χ2 (5.1)

As si(t) evolves through the iterations, Q(si(t)) increases when superpixels

added to the foreground increase the color histogram distance. These superpixels

are those that have a color histogram similar to si(t) and dissimilar to the rest

of the background region ni(t). Hence the quality of the segmentation increases

when the foreground is made dissimilar from the background. Note that driving

the segmentation by making the foreground “maximally divergent” from the

background is rooted in the literature of region-based segmentation [TYW00].

Therefore we seek to maximize Q(si(t)), while keeping si(t) a connected set. We

76

0 50 100 150
0

2

4

6

8

10

12

14

16

Iteration

Q
(s

i(t
))

Figure 5.2: A typical run of a foreground expansion. Through the iterations

Q(si(t)) increases when a superpixel is added (green points indicate inclusion of a

superpixel). Whenever the local background is updated, Q(si(t)) may decrease.

call the maximizer si(∞).

To determine si(∞), starting from si(0) (a superpixel), we iteratively test

the hypothesis, whether at iteration t a superpixel in the background region,

sj ∈ ni(t), in fact belongs to the foreground, sj ∈ si(t+1), by testing if the quality

of the segmentation increases:

77

“fg”

“bg”

t− 1 t t+ 1

74 75 76
11.5

12

12.5

Iteration

Q
(s

i(t
))

Figure 5.3: Top: The current foreground (“fg”) and local background (“bg”)

shown for three consecutive iterations. At (t− 1) we show the current state of

the two regions. At time t a superpixel is added (its boundary is shown in red

in the top-middle figure), which makes the foreground to expand, whereas the

background stays the same. This leads to an increase of Q(si(t)). At (t+ 1), the

local background is recomputed (the boundary of the superpixel added is shown

in red in the bottom-right figure), and this (in this case) leads to a temporary

decrease in the value of Q(si(t+ 1)). Bottom: Q(si(t)) for the three iterations of

the foreground expansion shown in this figure.

78

Q(si(t) ∪ sj) ≥ Q(si(t))⇔
K∑

k=1

‖φ(I(k)(si(t) ∪ sj))− φ(I(k)(ni(t) \ sj))‖χ2 ≥

K∑

k=1

‖φ(I(k)(si(t)))− φ(I(k)(ni(t)))‖χ2 (5.2)

If this condition is satisfied, we include sj in si(t + 1) and remove it from

ni(t+ 1). We also inflate ni(t) by letting ni(t+ 1) be the first and second order

superpixel neighbors of si(t+1). We then update the histograms of the two regions

and repeat the test on other superpixels in ni (using a lexicographic ordering for

selection). The test for inclusion is done only if a superpixel is neighboring with

si(t) (neighboring constraint). An alternative to lexicographic ordering would be

one that we test all superpixels and include the one that gives maximal increase.

We found that such approach works as well as the one we follow, but it is much

slower. The expansion is repeated until no other superpixel neighbors pass the

test or until the image boundaries are reached; in which case we set the iteration

index to t =∞ and call the resulting region si(∞) a foreground hypothesis.

In Fig. 5.2 we show a run of the foreground/background partition for one

superpixel. Q(si(t)) is computed at every iteration t. It is initialized by computing

Q(si(0)) for the seed region, i.e. for a superpixel. Every time a superpixel is added

to the foreground Q(si(t)) necessarily increases. Once the foreground is updated

with the addition of a superpixel, the local background is also updated to include

the first and second order neighbors of the new foreground. Therefore this step

changes the statistics of both the foreground and the background. This means

that after the regions are updated, it could be possible that Q(si(t)) decreases.

A decrease in Q(si(t)) indicates that the new local background now includes

superpixels that have statistics that are similar to the foreground. In further

79

Figure 5.4: The filter bank used: edge, bar and blob filters at one scale.

iterations, these regions are tested for inclusion and when added they increase

Q(si(t)), making the foreground dissimilar to the background.

5.3 Scale-adapted filter responses

To increase the discriminative power, we extend the hypothesis test to higher-

order statistics than the histogram of color values, as customary in the analysis of

texture [HB95, VZ03].

We choose a simple filter bank consisting of two directional filters at one

scale and 6 different orientations, a Gaussian low-pass filter and a Laplacian

of Gaussian filter, for a total of L = 14 filters. This is equivalent to a single-

scale version of [LM01] (see Fig. 5.4). Thus, rather than applying a multi-

scale (“texture”) segmentation scheme, we perform content-specific scale-selection

[Lin98], by adapting the scale of the filter bank to the size of each si we are

expanding.

The selection of the scale of the seed region is not only useful to determine

the size of the domain of the filter bank, but it is also critical to ensure sufficient

sampling of the statistics used to compute the inclusion test. If the region is too

small, the sample distribution will not be representative; if it is too large, with

high probability it will straddle the boundary and produce a mixture distribution.

Therefore, the adaptation of the scale is critical and should depend on the content

80

of the image.

Scale selection has been investigated for natural texture, where the entropy of

a statistic is computed on a region of growing area, and the radii corresponding

to local extrema of entropy are taken as the “natural scale(s)” of the texture. In

our case, we consider the area of the region |si(0)| = σ as the scale for the current

hypothesis. The scale of the domain of the filters is adapted to the size of si(0) as

0.15× σ1/2. Test (5.2) then generalizes to:

Q(si(t) ∪ sj) ≥ Q(si(t))⇔
K∑

k=1

L+1∑

l=1

‖φ
(
gl
(
I(k) (si(t) ∪ sj)

))
−

φ
(
gl
(
I(k) (ni(t) \ sj)

))
‖χ2 ≥

K∑

k=1

L+1∑

l=1

‖φ
(
gl
(
I(k) (si(t))

))
−

φ
(
gl
(
I(k) (ni(t))

))
‖χ2 (5.3)

where φ(.) generalizes to a histogram of intensity or filter response values,

g1

(
I(k) (ω)

) .
= I(k) (ω), gl

(
I(k) (ω)

)
, l = 2 . . . L + 1 are the responses of the

L filters. To partition the image into foreground/background for a particular

seed region, we start from a superpixel si and run Alg. 3. Typical results of the

foreground/background segmentation stage are shown in Fig. 5.5.

5.4 Combining multiple partitions

Natural images do not contain “foregrounds” and “backgrounds”. Instead, there

are multiple regions that, because of statistical homogeneity within, could be

considered putative “foreground” regions. Therefore, it is neither realistic nor

81

Figure 5.5: Foreground/Background partitions for selected seed locations. Given

a seed region si(0), the algorithm expands it to form si(∞). Top: Boundaries of

segmented regions, si(∞), are shown in red. Bottom: si(∞) are represented by

their mean intensity values.

Algorithm 3: si(∞) = expanded superpixel(I, si)

Input: Image I, and a seed si

Output: Segmented region si(∞) ⊂ {(p, q)}, (p, q) = 1 : (N,M)

Let t = 0, initialize si(0) = si and compute ni(0)

Let N (si(t))) be the first order superpixel neighbors of si(t)

foreach sj ∈ N (si(t)) do

Compute d− = Q(si(t))

Compute d+ = Q(si(t) ∪ sj)
if d+ ≥ d− then

Update si(t+ 1) := si(t) ∪ sj
Recompute N (si(t+ 1))) and ni(t+ 1)

Let t := t+ 1

Return sf (∞) = si(t)

desirable to expect that the procedures above, initialized from multiple seeds,

will converge to the same result. Therefore, there remains the question of how

to combine the results of multiple seed evolutions to produce a partition of the

82

image.

The resulting multiple segmentations are valid hypotheses of foreground regions.

We utilize affinity to congeal the multiple hypotheses into one. For each si(∞),

we build an affinity matrix in which pairwise relationships between si(∞) and its

neighboring superpixels are encoded. We then aggregate these matrices into one

and use that for the final segmentation.

Once all si(∞) are computed, we determine their neighboring superpixels,

N (si(∞)). For each superpixel sm ∈ N (si(∞)), we compute its distance from

si(∞) using d(sm, si(∞)) =
∑K

k=1

∑L+1
l=1 ‖φ

(
gl
(
I(k) (sm)

))
−φ
(
gl
(
I(k) (si(∞))

))
‖χ2 .

For all pairs sm, sn ∈ si(∞), we set Wi(sm, sn) = Wi(sn, sm) = 1 (based on the

evidence that all superpixels grouped in the foreground belong to the same re-

gion) and for all pairs sm ∈ N (si(∞)) and sn ∈ si(∞), we set Wi(sm, sn) =

Wi(sn, sm) = e−d(sm,si(∞))/ρ, where ρ = 0.5 in our experiments. We build affinity

matrices using each si(∞) and as a last step, we let the aggregated affinity matrix

W = Wi be the sample average. We estimate the number of regions from W , by

calculating its eigenvalues, sorting them and automatically detecting the point at

which the absolute value of the first order difference of the eigenvalues drops below

a threshold ε. We choose as the number of regions the number of eigenvalues that

have a first order difference larger than that threshold. Finally, we use NCuts

[SM97] to calculate the final segmentation, by using the code available from

[CYS04]. The overall algorithm is given in Alg. 4. To reduce the computational

overhead we run Alg. 3 from a superpixel si if and only if it is not included in a

region sj(∞), i.e. if si /∈ sj(∞), ∀j = 1, . . . , i− 1. Note that typically there will

be more than one region that a certain superpixel belongs to, hence multiple Wi

will be contributing to its aggregated pairwise affinities.

83

Algorithm 4: Aggregating figure/ground partitions

Input: Image I

Output: S: Region labeling for image I

Initialize ρ = 0.5

Calculate superpixels of I using [MRE04]

Let Ns be the total number of superpixels

foreach si /∈ sj(∞),∀j = 1, . . . , i− 1 do

Let si(∞) = expanded superpixel(I, si) (Alg. 3)

Initialize matrix Wi = 0Ns×Ns

∀sm, sn ∈ si(∞), set Wi(sm, sn) = Wi(sn, sm) = 1

∀sm ∈ N (si(∞)) and sn ∈ si(∞),

set Wi(sm, sn) = Wi(sn, sm) = e−d(sm,si(∞))/ρ

Let W = Wi

Estimate the number of regions N :

Let λi be the sorted eigenvalues of W in decreasing magnitude

Select as N , the number of eigenvalues that have a first order

difference λi − λi+1 > ε

Run NCuts [CYS04] with W and N for parameters to get the NCut

eigenvectors

Let S(si), i = 1, . . . , Ns be the membership of each superpixel

given the discretized eigenvectors

Return S

5.5 Experiments

We discuss three applications of our algorithm: (1) Foreground/background

partition, (2) Image segmentation and (3) Multi-scale segmentation.

84

BSDS300 [MFT01] Covering PRI VI

Human 0.730 0.868 1.163

Our method 0.597 0.813 1.737

gPb-owt-ucm [AMF11] 0.590 0.810 1.650

Total Var. [DUH09] 0.570 0.780 1.810

TBES [RMY09] 0.540 0.780 1.860

Mean Shift [CM02] 0.540 0.780 1.830

Felz-Hutt [FH04] 0.510 0.770 2.150

NCuts [CBS05] 0.440 0.750 2.180

Table 5.1: Comparison of various segmentation methods in the BSDS300 testing

set. The results of competing algorithms reported are taken from the study by

[AMF11]. Best results (ignoring “Human”) are shown in boldface. Our method

outperforms all other methods in the PRI and Covering metrics and scores second

in the VI metric.

Foreground/background partitions. In Fig. 5.5 we show a number of seg-

ments that have been computed using our foreground expansion method. By

maximizing the quality of the segmentation Q as defined, it allows us to ex-

pand the foreground region to include superpixels with similar histograms but

exclude dissimilar ones. This allows the algorithm to handle some variation in

the appearance of the foreground, since we do not penalize explicitly variability

of the foreground (e.g. the foreground in the second image from left in Fig. 5.5).

On the other hand, it always excludes dissimilar superpixels, ensuring that the

superpixels included in the foreground region have similar visual properties. This

observation lead us to the decision to define the affinities between superpixels in

the foreground to be 1, as explained in Sec. 5.4.

Image segmentation. We test our algorithm on the Berkeley Segmentation

85

Dataset (BSDS300), which consists of 200 training and 100 test images. Each

image has multiple ground-truth segmentations. Our method is compared against

6 other methods. We use the following region-based metrics: (i) Probabilistic

Rand Index (PRI) [M 71], (ii) Variation of Information (VI) [Mei05] and (iii)

Covering [AMF11]. PRI measures the agreement between two segmentations,

S = {s1, . . . , sr} and G = {g1, . . . gm}, of n pixels and it is simply the accuracy

of the algorithm. It ranges between [0, 1]. VI is given by: V (S,G) = H(S) +

H(G) − 2 × I(S,G), where H(.) is the “entropy” of the segmentation and I(.)

is the mutual information of a pair of segmentations. Covering is given by

C(S → G) = 1
n

∑
gi∈G |gi|maxsi∈S O(gi, si), where O(gi, si) is the overlap between

two regions gi, si and is given by O(gi, si) = |gi ∩ si|/|gi ∪ si|. For multiple

ground truth images we take the average over the computed values between our

segmentation and each of the ground truth segmentations. For PRI and Covering,

higher values indicate a higher agreement, whereas for VI lower scores are desired.

The results are reported in Table 5.1. Note that the result reported for

“Humans” for each one of these metrics is calculated by computing each metric

for each ground truth segmentation against the rest of them and then the result

averaged over all images and humans. For qualitative evaluation of our method, we

provide segmentation results in the training and testing set, shown in cvpr14/figs.

5.6, 5.8. Note that [DUH09] is the most similar method to us, which we show

to outperform significantly in all three metrics. Overall, we rank first in two

out of three metrics and second in the third one. By aggregating multiple

foreground/background hypotheses for multiple seed regions allows us to build

pairwise superpixel affinity relationships that are more robust than a single-pass

image segmentation algorithm. Furthermore, the accuracy of the foreground

segments plays a vital role in determining an accurate affinity matrix for image

segmentation.

86

Figure 5.6: Segmentation results in the BSDS300 training set. Detected boundaries

are shown in red.

For the reported results, we found that for histograms of intensity values and

filter responses, 25 bins gave us the best results. Using fewer bins yielded an

increase in speed with only a slight performance degradation. The scale of the

domain of the filters was chosen according to Sec. 5.3. For the rest of the filter

87

Figure 5.7: Multi-scale segmentation results. By varying the number of regions,

we can produce segmentation results at different scales. From left to right:

3, 7, 11, 15, 19 regions.

parameter values, we used the largest scales of [VZ05]. We have chosen to compare

histogram distances with χ2 instead of l1 for performance reasons. For a more

extensive comparison between the two distances see [PW10]. As suggested by

others [RMY09], all images were converted to the LAB colorspace [Wan95] giving

us an extra performance boost. These parameters were selected by optimizing

our results in the training set.

The algorithm takes on average 96 seconds to complete, excluding the com-

putation of the superpixels, for a 481 × 321 sized image, with a MATLAB

implementation on an Intel 2.4 GHz dual core processor machine. Note that this

is significantly faster than the second best performing algorithm [AMF11]. The

main computational burden comes from calculating the distance between the

histograms, which is linear in the number of bins.

88

Figure 5.8: Segmentation results in the BSDS300 testing set. Bottom row: Failure

cases. Detected boundaries are shown in red.

Multi-scale segmentation. Depending on the algorithm, multiple segmenta-

tions can be produced by varying one (model selection) parameter, for instance

the expected number of regions. Instances of multiple segmentations generated by

our algorithm are shown in Fig. 5.7. These are produced by allowing the number

of regions N to vary in order to achieve a coarse-to-fine segmentation.

89

Failure cases. We show a representative sample of failure cases in the bottom

row of Fig. 5.8. The main sources of error come from the following: (1) Estimating

the number of regions that would yield the “best” segmentation is a problem

that is not well defined. Therefore, a few of the final segmentations result with

either too many or too few regions, (2) Some foregrounds have statistics that are

“similar” to their backgrounds and since this is a low-level algorithm, if the visual

properties of the two regions are similar, they cannot be discriminated. A possible

way to improve the algorithm is to incorporate high-level semantics.

5.6 Discussion

Partitioning an image into multiple regions that exhibit local stationarity is

a computationally complex problem. We have tackled this by breaking the

problem down into a sequence of binary partitions of “foreground/local background”

exploiting the robustness of region-based methods without being excessively

penalized by their sensitivity to clutter. This is our first contribution. The second

is in the handling of scale. Whereas most existing approaches start by feeding

the image to a multi-scale filter bank, we let the local structure of the image

determine what the scale of the local filters should be, that enables us to capture

local statistics without excessive computational burden. Finally, we have shown

how one can aggregate the multiple partitions into one segmentation, by computing

pairwise affinities between superpixels in the foreground and background regions.

We have used standard benchmarks commonly found in the literature, where

we have shown that, we outperform other schemes in two out of three metrics.

We have provided numerous examples of success and failure.

90

CHAPTER 6

Encoding Scene Structures for Video

Compression

The growth of video consumption over Internet and wireless [CIS11a] has recently

rekindled interest in video compression, specifically towards breaking the compres-

sion ceiling of existing algorithms that encode video as a stream of blocks of pixels.

Our goal is to develop algorithms that achieve high compression performance

relative to a perceptual metric by encoding not the video stream directly, but

instead the scene that generated it, albeit without explicitly reconstructing it.

To this end, it has been noted that, under suitable assumptions, “structures”

(regions of images that can be associated to a local reference frame) correspond

to photometric or geometric characteristics of the scene if correspondence can

be established across different images of the same scene [Soa10]. This has been

exploited in previous chapters to show that the domain of each image can be

partitioned into two disjoint (multiply-connected) sets: Structures and “textures,”

with the latter corresponding to spatially stationary regions. In this paper we

propose a method to improve the spatial localization of such a partition.

In Chapter 3 we showed how Visual Structures and Visual Textures can be

used to encode efficiently a video. The approach was based on partitioning the

video frames into textures and structures and then letting the texture synthesis

algorithm handle the boundary conditions. An alternative to that approach would

91

be to explicitly specify the texture and structure regions using a segmentation

map. The boundary conditions are handled explicitly not by the texture synthesis

algorithm, but by matching boundary gradients to produce a gradient field that

approximates properties of natural images [TJP10].

6.1 Related work

Our work is naturally related to video compression schemes as reflected in stan-

dards such as H.262, H.263, H.264 [ITU]. While standard methods perform both

spatial and temporal prediction of the measured signal, they rarely model the

data formation process explicitly in terms of the underlying scene. We do not

advocate explicit reconstruction of the underlying scene; however, we describe

“structures” in images as a function of corresponding structures in space, that

under suitable conditions can be inferred from temporal correspondence. Thus,

“trackable” regions can be temporally encoded making use of optical flow whereas

non-trackable regions can be encoded spatially. The residual of the encoding pro-

cess can then be encoded as standard. Another approach is followed by [ZXZ11]

where the frames are divided into four types of regions: sketchable and trackable,

non-sketchable and trackable, sketchable and non-trackable and non-sketchable

and non-trackable. Each type of region is encoded individually taking advantage

of its properties.

In this chapter we propose a sequential approach whereby we first detect

regions of the image that contain structures and are properly sampled (Section

2.1). We then exploit the complementarity of structures and textures Section

3.3.3 to encode the remainder of the image by performing texture segmentation

(Section 6.3). We then infer a compressed representation of the textures (Chapter

4) that enables us to synthesize a perceptually similar realization at decoding.

92

This approach will suffer in traditional evaluation metrics, but is designed to

yield perceptually equivalent encoding/decoding at smaller complexity. To encode

the structure regions, we create a dictionary by taking into account the spatial

and temporal components of such regions. For textured regions we store the

compressed representation of each texture (Section 6.4).

6.2 Texture / Structure partition

In this section we describe how to exploit temporal redundancy when possible

(structures) and how to exploit spatial redundancy otherwise (textures). For

completeness, we summarize previously described notions and provide a number

of extensions.

6.2.1 Temporal redundancy

Proper sampling yields as a byproduct a partition of the image(s) into two regions.

Those for which unique correspondence can be established, and the rest. We

call the former ones trackable regions. They are both canonizable and properly

sampled. Trackable regions are characterized by the “signature” of each region

at the finest scale at which it is tracked, for instance the actual pixel values in a

neighborhood of the origin of the tracked frame, as well as the frame itself, for

instance position, orientation and scale for the case a similarity reference frame.

To determine trackable regions, we use [LS11], that requires a detection

threshold. The effects of such a threshold are visible in Figure 2.1, where the

number of tracks decreases by increasing the threshold. The ones that persist

are usually the most accurate. One can see that almost all trajectories on the

sea are eliminated. In later sections we will argue that those regions are spatially

93

stationary and will exploit this property for compression. Trackable regions

exhibit temporal redundancy and we would like to exploit that instead. Co-

variant detector functionals can be chosen to canonize a variety of groups, from

the simplest (translation) to the most complex (homeomorphisms). The larger

the group, the more costly it is to encode, the larger the region that can be

encoded. The optimal choice of group depends on the statistics of the images

being compressed, and there is no choice that is best for any sequence. For the

purpose of illustration, in what follows we will focus on the similarity group of

translations, rotations and isotropic scaling. In many cases one can assume that

(planar) rotation is negligible and focus on the location-scale group.

Tracking then provide a (moving) reference frame, relative to which one can

encode a portion of the region of the image. If the image is undergoing a similarity

transformation, no change will be observed in the moving frame. Most typically,

however, similarities are not sufficient to explain the complexity of the image even

in a small neighborhood and therefore the region will progressively change over

time.

A simple approach to encode such changes is to create a dictionary element

for each region of the same size as its neighborhood that will be time invariant

i.e. constant. The best possible representation would be the average of the pixel

values over time. In mathematical notation, if F (t)
.
= {I(x, t), x ∈ Bσ(t)} are the

pixel values in an neighborhood B at scale σ at time t, we represent a trackable

region in a dictionary as T = 1
N2−N1

∑N2

t=N1
F (t) where N1, N2 are the first and last

frames that track appears. Hence the scale of the dictionary element is naturally

selected to be the finest scale at which the track was detected and its temporal

appearance is averaged out to further improve compression rates. Hence the

dictionary is composed of elements of different spatial resolutions resulting in a

94

multi scale representation of the trackable regions. Note that this representation

was previously introduced in Section 2.1.1.

6.2.2 Spatial redundancy

We exploit spatial redundancy by encoding stationary regions through their

sample statistics. Following the texture representation introduced in Chapter 4,

we consider three regions: ω, ω̄ and Ω. The generator ω ⊂ Z2, with cardinality

|ω|, is the smallest region where some statistic φω (“features”) is defined. In

order to perform an empirical test, we need a larger region ω̄ ⊃ ω where to

aggregate the statistics. The region Ω is the largest admissible region where the

stationarity assumption is satisfied. For a complete treatment of the properties

and characterizations of textures, refer to Chapter 4.

6.2.3 Compression

Given {I(x), x ∈ Ω}, compression is achieved by inferring the (approximate) min-

imal sufficient statistic ω and the stationarity scale σ by solving (4.7). Then I(ω̄),

for any ω̄ ⊂ Ω with |ω̄| = σ is stored. To infer the unknowns, we parametrize both

ω and ω̄ to be square neighborhoods. In addition, we approximate d(I(xi), Î(xi))

with the KL-divergence between the distributions of pixel values around the

neighborhoods of xi and xk̂i (Alg. 5).

6.2.4 Extrapolation

Given a compressed representation I(ω̄), we can in principle synthesize novel

instances of the texture by sampling from dP (I|ω) within ω̄. In a non-parametric

setting this is done by sampling directly neighborhoods I(ω) within ω̄. To

95

Algorithm 5: Compression algorithm.

Initialize σ = [σ1, σ2, . . . , σN], r = [r1, r2, . . . , rN]

foreach σ do

Sample square patches ω̄ of size σ from Ω

foreach ω̄ do

foreach r do

Sample square patches ω of size r from ω̄

Compute Ĥ(I(x)|ω − {x}) + 1
β
|ω̄|

Let ω̂, σ = arg minω,σ=|ω̄| Ĥ(I(x)|ω − {x}) + 1
β
|ω̄|

extrapolate the texture from a given sample I(ω̄) compatibility conditions have

to be ensured at the boundaries of ω̄. We perform texture extrapolation using

Alg. 1.

6.3 Segmentation

Given an image I we want to find Ωi for the different textures in the image. The

algorithm (Alg. 6) requires knowledge of the number of regions to be segmented

(model selection) that can be determined using Agglomerative Information Bot-

tleneck (AIB) [ST99]. Note that it is possible for a texture region to not have a

well-defined boundary. In that case, boundary compatibility conditions have to

be imposed with other structures in the image, as we discuss in Section 6.4.

In order to perfect the encoding, we rely on the partition of the image into

texture regions and structure regions. Consider a point x ∈ D and its neighbor-

hood. If it is canonizable at a scale ε, there is a co-variant detector with support

ε (a statistic) that has an isolated extremum. This implies that at a scale |ω̄| = ε,

it is not possible to capture the variability of the texture and, as such, it is not

96

Algorithm 6: Segmentation algorithm.

Initialize N = 12,M = 30, K

Sample (overlapping) square patches ω of sides N on a dense grid from the

image

Let {ω} be the set of sampled ω’s from previous step

foreach ω do

Calculate a histogram of intensity values with M bins for each patch

Calculate an empirical probability p(M |{ω})
Use AIB [ST99] to sequentially merge ω’s that that decrease I({ω},M)

the least

Cut the tree built by AIB in K clusters to obtain K-clustering of the ω’s

foreach pixel xi do

Calculate in which ω’s, xi falls in

Find which cluster K, xi belongs to, using a max vote of the

memberships of the ω’s it falls in

Form regions Ωi based on clustering of pixels

97

possible to model it as a texture. It also implies that any region ω of size ε = |ω|
is not sufficient to predict the image outside that region.

This of course does not prevent a region that is canonizable at ε to be a texture

at a scale σ >> ε. Within a region σ there may be multiple frames of size ε,

spatially distributed in a way that is stationary/Markovian. Vice-versa, if a region

of an image is a texture with σ = ω̄, it cannot have a unique (isolated) extremum

within ω̄, lest it would not be a sample of a stationary process. Of course, it could

have multiple extrema, each isolated within a region of size ε << σ.

Thus for any given scale of observation σ, a region ω̄ with |ω̄| = σ is either a

structure or a texture. Hence one can detect textures for each scale, as the residual

of the canonization process described in Sect. 2.1. One may have to impose

boundary conditions so that the texture regions fill around structure regions

seamlessly. In the next section we describe how this is done in our framework.

6.4 Evaluation

Once we perform co-variant detection and proper sampling we encode the trackable

regions by their corresponding dictionary element as discussed in Section 6.2.1. A

typical result is shown in the first image in Figure 6.1. The rest of the domain of

the frame is a candidate for texture, following the earlier discussion. We perform

texture segmentation using Algorithm 6 and we obtain the second image of Figure

6.1. For AIB we use the implementation from [VF08]. Structured regions are

excluded from the segmentation and the segmentation algorithm is restricted to

the rest of the domain.

It can be observed that the tracking mechanism fails to track some of the

structure regions. This is unavoidable as the texture/structure partition is an

98

Figure 6.1: Pipeline. From left to right, top to bottom: (1) Tracked regions map.

(2) Initial segmentation (red indicates boundaries of tracked regions, blue and green

indicate boundaries of texture region candidates). (3) Regions of the image that did

not satisfy the stationarity assumption underlying the texture hypothesis. (4) Updated

tracked region map. (5) Final structure / texture partition. (6) Compressed textured

region. (7) Synthesized textured region. (8) Natural blending of textures and structures.

early commitment based on low-level statistics. It is therefore important that

the subsequent stages of processing can compensate for such unavoidable errors.

In particular, in the example above, trying to synthesize those regions by the

algorithm described in Section 6.2.4 will fail. Therefore, a stationarity test needs

to be applied to verify the validity of the texture assumption before texture

synthesis. This test rejects the regions within the blue boundaries, that are

therefore excluded from the synthesis process, and encoded as structures instead.

Since the tracking mechanism often fails to detect small structures, but small

structures can be perceptually salient, such a repechage mechanism is critical to

the successfully encode complex scenes. In the third image of Figure 6.1 we show

the domain of the regions that have failed the stationarity test and that were

initially not detected by the co-variant detection mechanism.

99

Figure 6.2: Reconstruction of structured regions. Left: Input frame, Center: Video

Primal Sketch, Right: Our method. Our method successfully preserves salient regions.

The collection of trackable regions is then updated, and the final partition is

shown in the fourth panel in Figure 6.1. We then reiterate the texture segmentation

routine to obtain the different textured regions in the frame. We compress each

texture region using Algorithm 5. A typical result is shown in the sixth panel

of Figure 6.1. Finally we store the dictionary and the locations of the trackable

regions and the compressed representations of the textures. When more than one

texture is detected in a video frame, we also store the texture boundaries.

At decoding time, we synthesize the textures using Algorithm 6 (seventh image

of Figure 6.1) and overlay the trackable regions using the representation stored in

the dictionary. Representative results of this procedure are shown in the central

column of Figure 6.3. It is immediate to see that boundary conditions are not

matched across the texture/structure partition, resulting in salient perceptual

artifacts. In order to enforce compatibility at the boundary in a way that is

consistent with the statistics of natural images, we determine pixel-level boundaries

of the textured regions, and restrict the domain of the texture representation to

this region, leaving the texture synthesis algorithm to explain the remainder. To

determine the boundary, we perform texture synthesis on the entire domain, and

restrict structures to regions that exhibit large residuals. Hence we can build

accurate boundaries for the texture as shown in the fifth panel of Figure 6.1. To

100

enforce prior knowledge we have of the statistics of natural images, we exploit

boundary gradients to produce a gradient field that is (approximately) integrable,

a typical property of natural images [TJP10]. We use the algorithm proposed by

[TJP10] and typical results are shown in the right column of Figure 6.3.

We also compare our method with [ZXZ11] in Figure 6.2. It can be seen that

their method misses important structures that are detected by our approach.

6.5 Discussion

We have described an encoding of structure regions using a dictionary representa-

tion, and exploited the partition of the image domain into structures and textures

to exploit both spatial and temporal redundancy for video compression. Our

approach is an extension of previous chapters by considering a tight partition

respecting object boundaries and the statistics of natural images.

101

Figure 6.3: Samples from the “bird-sea” sequence. Left: Input sequence, Center: Over-

laid tracked regions and synthesized textures. Right: Natural blending of synthesized

textures and tracked regions.

102

CHAPTER 7

Scene-Aware Video Modeling and Compression

Video exhibits considerable redundancy in both space and time, and generic

priors such as sparsity and regularity have been exploited with some success,

but diminishing return. Pressure from the applications1 calls for new approaches

to break the “video compression wall.” To do so, encoders ought to explicitly

model and exploit the phenomenology of the data-formation process, rather than

treating video as a generic bit-stream. In other words, rather than encoding the

video, one should encode some “representation” of the scene that generated it.

The representation (encoding) depends on the task: The best encoding for human

fruition (e.g., compression of movies) is different from the best for surveillance,

robotic navigation, or content-based video retrieval [Soa10]. In this paper we

focus on human fruition, like classical video compression, where performance is

ideally computed with some perceptual score [TH94], but in practice with the

(perceptually irrelevant) RMS or PSNR scores.

Two phenomena of the optical data-formation process are critical to compres-

sion: occlusion and scaling. Occlusion implies that there are portions of the scene,

or the light source, that are visible in one image but not another, and therefore

must be encoded anew. Scaling implies that there is no “Nyquist frequency” in

the scene, as moving closer to objects causes more and more structure to appear.

1CISCO projects that, by 2014, 90% of Internet traffic, and 64% of wireless traffic will be
video. In 2010, video surpassed peer-to-peer traffic on the Internet [CIS11b].

103

This causes phase transitions (singular perturbations) in the representation, and

forces the continuous limit to be part of the analysis.

Occlusion phenomena (occluding boundaries), together with material tran-

sitions (material boundaries) and illumination boundaries (cast shadows), are

indirectly accounted for in existing video compression schemes: They all yield

highly kurtotic gradient distributions that are captured by sparsity-inducing priors.

However, of the three, only occlusion phenomena yield an “information increment”

(innovation), where future data cannot be explained with past data. Therefore,

it is important to be able to detect occlusions, which we do in Sect. 7.3.1. This

also relates to optical flow which addresses temporal redundancy. Scaling and

quantization challenge the traditional sampling paradigm, and calls for a new

notion of “proper sampling”, that we introduce in Sect. 7.3.2. This relates also to

the notion of “texture” and addresses spatial redundancy.

In Sect. 7.4 we report our experimental results. Although our focus is on out-

lining a modeling framework, we show that even a non-optimized implementation

of our pipeline beats baseline performance using the PSNR score. In Sect. 7.5 we

point at limitations and challenges in our approach.

7.1 Related work

At the level of generality adopted thus far, this work relates to the entirety of

computer vision. However, our goal is not to infer geometric, photometric, or

dynamic properties of the scene from video. Instead, we aim to infer just enough of

the phenomenology of the scene to be useful for compression, specifically occlusion

and scaling. Even so, relevant prior work goes beyond what we can cover in

conference submission. We refer the reader to representative work on optical

104

flow [HS81, BBP04, LYT08], occlusion detection [ARS11, BA96], tracking e.g.

KLT and particle filter [SBK10, TS94, ST06], segmentation e.g. gPb, mean shift

[AMF11, CM02, FH04], texture analysis and modeling [EF01, LLX01, KEB05],

including texture/structure partitioning [GZW03b, ZXZ11]. Finally, all video

compression standards that offer end-to-end solutions are related to our work e.g.

H.262, H.263, H.264 [ITU].

7.2 Formalization

A (grayscale) video I : D ⊂ Z2 × N → N; (x, t) 7→ I(x, t) is a spatially and

temporally quantized version of a hidden signal that we call radiance ρ. If we

consider, for the sake of example, a planar scene parallel to the image, then a

motion orthogonal to it induces a re-scaling of the image domain: I(x, t) =
∫
δε(x−

x̃)ρ(s(t)x̃)s(t)dx̃, where δε is the quantization kernel (for instance an indicator

function supported on the pixel). This shows that we cannot just discretize the

radiance by defining ρ on a discrete domain, because by going sufficiently far from

the scene we can make s(t) sufficiently small, and therefore the sampling of s(t)x̃

sufficiently high-rate. Instead, we must consider it as a (continuous) function from

surfaces embedded in three-dimensional space to the positive reals. If the scene

is not a fronto-parallel plane, but has arbitrary shape, it induces a deformation

of the image domain that is an epipolar transformation [MSK03], which can be

shown to admit as closure the entire group of planar diffeomorphisms [SPV09b],

so I(x, t) =
∫
δε(x− x̃)ρ(w(x̃, t))|Jw(x, t)|dx̃. Therefore, we model the radiance as

a function ρ : R2 → R+, and scene or viewer’s motion as a domain diffeomorphism

w : R2 → R2. If we think of the radiance as the “representation” that we wish to

infer, encode, store, and reconstruct, in addition to unknown domain deformations

w, we have unknown transformations of the range of the data. The simplest

105

are contrast transformations κ : N × N → R+; (I, t) 7→ κ(I, t)
.
= κ(t) ◦ I, that

are continuous monotonic transformations of the range space of the image. For

simplicity, we will include the quantization kernel in the contrast transformation,

and therefore consider models of the form:

I(x, t) = κ(t) ◦ ρ ◦ w(x, t) + n(x, t) (7.1)

where n is the residual that lumps all unmodeled phenomena (mutual-illumination,

inter-reflection, transparency, translucency, vignetting, etc.) as well as sensor noise

and other more standard phenomena. The model (7.1) describes the temporal

evolution of the data in the co-visible portions of the scene. These are portions of

the scene that are visible in more than one image at a time. In the complement,

i.e. the (multiply-connected) occluded region Ω(t) ⊂ D, the image at a given

time t can in principle take any value compatible with the marginal statistics of

natural images. So, the residual n(x, t) can be assumed to be small, spatially and

temporally white and homoscedastic in the co-visible region D\Ω(t), but it could

be arbitrarily large in the occluded region Ω(t) ⊂ D. However, such regions are

typically sparse, in the sense that the occluded area |Ω(t)| is small relative to D.

Given a collection of images, {I(x, t)}x∈D,t∈[0, T], our goal is to infer a model

Σ = {κ̂, ρ̂, ŵ}, that is as “simple” as possible, and that yields as “small” a residual
∑

t,x |n(x, t)|. This can be framed as an optimization problem, where we must

declare what we mean by “simple”, what we mean by “small”, and define the class

of models Σ. Unlike other tasks, such as decision and control, in reconstruction

we do not care about model identifiability, so long as we can find any model that

fits the bill. In the next section we describe these ingredients and the ensuing

algorithmic instantiations.

106

7.3 Encoder

7.3.1 Occlusions, optical flow, and temporal redundancy

Occlusion detection is a binary classification problem where each pixel is labeled

as either co-visible (x ∈ D\Ω(t)) or occluded (x ∈ Ω(t)). Note that this does

not depend on how many “objects” there are in the scene, or occlusion layers:

A point on the scene is either visible or not. In order to test for occlusion,

we must invalidate the co-visibility hypothesis, that entails searching for the

domain diffeomorphisms that maps one image onto another. If we restrict our

attention to two temporally adjacent images, this problem is known as optical flow:

ρ(x) = I(x, t− 1) and the residual n(x, t) in (7.1) is the sum of two components:

e2(x, t) that is dense, (defined for all x ∈ D) but statistically “simple” (spatially

and temporally uncorrelated, isotropic, homoscedastic etc.) with a small variance.

The other e1(x, t) can be arbitrarily large, but it is only defined on the occluded

domain x ∈ Ω(t). Thus the problem is to simultaneously infer optical flow w(x, t)

as well as the occluded region Ω(t), that is time-varying, multiply-connected, and

in general can be rather complex (think the occlusions induced by motion in front

of a barren tree). Ayvaci et al. [ARS11] have framed this problem as a convex

variational optimization, and solved it with numerically efficient Augmented

Lagrangian methods. We will therefore take this stage as a building block and

assume that, at each time t, we have an estimate of the characteristic function of

the occluded region, Ω̂(t) ⊂ D, as well motion field ŵ(x, t), x ∈ D\Ω̂(t) that solve

ŵ(x, t), Ω̂(t) = arg min
w,Ω
‖e2‖`2(D) + λ‖e1‖`1(D\Ω) (7.2)

s. t. I(x, t) = I(w(x, t), t− 1) + e1(x, t) + e2(x, t)

107

plus some regularization of the motion field w; λ is a tradeoff factor (multiplier).

Note that we have not included a range transformation κ(t), since we do not expect

significant contrast changes between adjacent images, and the small residual can

be lumped into e2. In Figure 7.1, we show results on a few test sequences based

on the algorithm used. While optical flow tells us what regions of the images are

Figure 7.1: (COLOR) Occlusion detection and optical flow: Original images (top) and

optical flow (bottom), visualized according to the color scheme shown in the top left

corner of each image. Black regions are occluded, so no motion estimate is available

since there is no region in image I(x, t− 1) that, transported with w(x, t) yields I(x, t).

occluded, and therefore regions where we cannot exploit temporal consistency,

not every pixel in the co-visible region has a unique correspondent. Those that

do can be encoded once and then “tracked” through subsequent frames. Those

that do not can be sampled or filled in independently in successive frames, as we

discuss in the next section.

Encoding the motion field w(x, t) is, in principle, more than twice as costly

as encoding the image, since I(x, t) ∈ N, whereas w(x, t) ∈ R2. So to achieve

108

compression one has to exploit the spatial regularity of the motion field, that is

assumed to be piecewise smooth everywhere away from occlusions (unlike the

image that cannot be realistically assumed to be piecewise smooth). For any

given tolerance ε, one can devise a partition of the co-visible region such that the

cumulative approximation is within ε. This corresponds to a motion segmentation

task. We break this process in two parts. The first involves detecting contours

and the second part involves using those contours to segment the image frame.

Breaking this process into these two components allows us to retrieve several

different segmentations depending on the strength of the boundary. As we will

see, this enables adaptive merging of neighboring regions to trade off complexity

and fidelity. We use [AMF11] for contour detection and segmentation. In Figure

7.2 we show representative samples of this process.

Figure 7.2: Segmentation [AMF11]. Varying a threshold yields structurally different

segmentations. Original test frame (left). Segmentation using a low threshold (center).

Segmentation with a higher threshold (right).

7.3.2 Proper sampling

Co-visible regions can be put in correspondence, in the sense that there ex-

ists a deformation of the co-visible domain that maps one image onto another:

D\Ω(t) = {w(x, t) | x ∈ D\Ω(t − 1)}. However, individual pixels can have

109

multiple correspondents, for instance when the co-visible region is homogeneous

or self-similar. These regions will be spatially encoded as “textures” in the next

section. Everywhere else, we can establish a local reference frame via a process

known as canonization [Soa10]: Co-variant detector functionals [LS11] operate

on a multi-scale representation of the data and are used to detect extrema that

correspond to “canonical” local frames. However, we do not know whether such

extrema are due to the “scene” (e.g. a material transition), or are “aliasing” phe-

nomena (e.g. discontinuities due to spatial quantization or noise. Ideally, for the

discretization to be a proper sampling, we would like for the response of co-variant

detector functional operating on the image I(x, t) to be topologically equivalent to

the response of the same functionals operating on the scene ρ ◦ w(x, t)−1. Unfor-

tunately, we do not know the scene, so this hypothesis is not testable. However,

under the assumptions of Lambertian reflection and co-visibility, proper sampling

is equivalent to topological consistency between different images of the same

scene, for instance I(x, t), I(w(x, t), t− 1). The portions of the regions that are

properly sampled are then “trackable” [LS11], and can be encoded once. The

aliased structures are instead lumped in the ensemble description that is treated

by the texture module described in Sec. 7.3.5. Additional processing can be

performed to aggregate tracks over multiple views [SBK10]. In Figure 7.3 covering

trajectories on sequences are shown.

7.3.3 Structure / Texture partition

Once proper sampling is established, and therefore temporal redundancy is ac-

counted for, we consider spatial regularity. This can be of two kinds: Spatial

regularity of trackable regions and their description [LS11], and spatial stationarity

of the (colored) noise process that is independently sampled in different temporal

110

Figure 7.3: Covering of trackable regions [SBK10]. The rest is encoded by the texture

module.

frames. This corresponds to the notions of “regular” and “stochastic” textures

[WGZ08].

As discussed in Section 7.3.1, encoding the motion field point-wise in trackable

regions would be costly. Given a segmentation, we can assign the same motion

vector to the entire region, or a sub-partition. Unfortunately, segmentation does

not usually respect structure/texture partition and can contain areas that are

trackable, or not. Since scale composed with quantization is a semi-group, rather

than a group, we have to consider multiple segmentations at different scales

(hierarchical segmentation) and aggregate motion vectors only at the finest scales.

We then merge regions in a greedy fashion to satisfy both motion constraints and

structure/texture partition. We show representative results in Figure 7.4.

7.3.4 Encoding trackable regions

For a trackable region in frame I(x, t+1), the encoder can select either temporal or

spatial prediction. For temporal prediction, we calculate the median optical flow

within the region and use it to find the corresponding region in I(x, t), together

with the residual error. This is done for each region independently. This allows

the encoder to select prediction rules (spatial or temporal) independently for each

111

Figure 7.4: Original Test Sequences (top). Texture/Structure partition (bottom).

Regions in green are labeled trackable regions and we can assign a motion vector to

them. Textured regions are either homogenous regions or stochastic textures and it is

preferable to spatially predict them since they cannot be tracked.

region. Note that at occluded regions, we do not perform motion estimation.

Spatial prediction can be performed in trackable regions provided that the

motion, and the local description of the image around each co-variant frame, is

spatially regular, so the image can be considered as a sample from a stationary

and ergodic spatial process. Spatial prediction thus yields a form of texture seg-

mentation. However, unlike the case described in the next section, the prediction

has to be temporally consistent. To this end, we calculate the mean value of each

region in an image and propagate it through its motion vectors, to temporally

adjacent images. Again, this process is performed independently for each region

and yields a (spatial) prediction, together with a residual.

112

7.3.5 Encoding non-trackable regions

Non-trackable texture regions can be encoded independently in each image, since

by definition there is no temporal consistency. One can still exploit spatial

redundancy and perform temporal prediction as done in Sect. 7.3.4. Rather

than spatially extrapolating a realization we extrapolate statistics and sample

independently at each image, thereby eliminating temporal consistency. This is

equivalent to texture synthesis and is described next. In addition, the encoder

has still the option of using temporal prediction, to enable overcoming errors in

the texture/structure partition.

In the texture synthesis mode, we chose to use a variation of the algorithm of

[KEB05] because it is relatively efficient and gives results that are perceptually

acceptable, even though we are aware that we will pay a price in terms of PSNR.

Note that the algorithm used is also a variant of Alg. 1 with an added term. This

non-parametric sampling-based approach takes a subset of a texture region and

expands it. This is accomplished by minimizing the following energy:

Et(I|B ; {I|N(B)
}) =

∑

p∈N(B)

‖Ip − Îp‖2 + µ
∑

p∈N(B)

‖DIp −DÎp‖2 (7.3)

where I|B is a vectorized version of the textured region to be synthesized and

{I|N(B)
} is the set of vectorized neighborhoods from the input texture. The vectors

Îp and Ip are neighborhoods of the input and synthesized textures respectively,

centered at pixel p, that are closest in appearance. D is the differentiation

operator. In principle, N(B) can be every pixel on the synthesized image grid.

For computational complexity reasons, we only consider a subset of them.

The energy above is minimized using an EM-like alternating minimization.

The first step minimizes the energy by direct differentiation with respect to Ip that

yields a linear system of equations. The second step uses the calculated Ip to find

113

the set {Îp}, using nearest-neighbor (NN) search. The process is repeated until the

decrease in energy is negligible, as customary. In addition, a re-weighting scheme is

used to improve outlier rejection (similar to iteratively re-weighted Least Squares

(IRLS)). The scheme is repeated over 3 neighborhood sizes: w = [32, 16, 8]. Finally,

the minimization procedure is repeated over a number of different resolutions (i.e.

image sizes). Therefore, the whole algorithm is performed in a multi-resolution

multi-scale fashion. The relative weight parameter is set to µ = 10.

The algorithm works well for fine-scale textures; however, textures that exhibit

structure at coarse scale (e.g., the bricks in Figure 7.5) require large region sizes

to be captured. This is particularly severe when the regions are selected with a

uniform prior. To minimize this effect, we replace

α̂ = arg min
αp
‖Ip − Y αp‖2

2 + λ||αp||1 (7.4)

where Y = [I1 I2 . . . IN] are the concatenated vectorized neighborhoods from

the set {I|N(B)
} and N is the total number of neighborhoods in the original image

that we consider. Thus, instead of selecting one NN, we choose a sparse linear

combination. This improves the stability of the algorithm in degenerate cases. We

show results of our texture synthesis algorithm in Figure 7.5. Artifacts are still

visible for the brick texture, but they are less severe than without this additional

step. To synthesize textures, we always encode a quarter of the size of the region

and synthesize the rest.

7.3.6 Encoding video frames

After calculating the predicted images using the spatial, temporal and synthesize

modes, the encoder chooses for each region the prediction mode that yields the

smallest residual. We maintain an index function for the prediction mode used

for each region. The predicted and error images are then formed. If a region

114

Figure 7.5: Low resolution image patches (top). Image Patches of higher resolution

synthesized with our algorithm (bottom).

is predicted temporally, the predicted region is taken to be the one calculated

with the temporal prediction. The same applies for the other two modes. Since

each region has been predicted independently, there is no issue of inconsistency.

The error image is transformed and quantized in the same way as in H.264 [ITU],

zig-zag scanned and entropy encoded. We encode the boundary indicator function

of the regions using run length encoding (RLE). We also use RLE for the indicator

function of the occluded pixels. We use entropy coding on the output of the

RLE. Motion vectors, mean values for spatial prediction and the small patches

for textured regions are also entropy encoded. The predicted image plus the error

image form the new image frame, which is then subsequently used as the previous

frame for encoding the following frame. Hence the decoder is embedded in the

encoder, similar to modern coding standards. All quantities are quantized at the

quantization level specified by the user.

115

7.4 Experiments

To evaluate our encoder we compared its performance with four different encoding

methods. In the baseline method used (blue curve in Figure 7.7), we encoded

the video sequence by quantizing and entropy coding each frame independently.

In the second method (yellow curve) we calculated the difference image between

the last encoded frame and the next frame. We quantized and entropy coded the

difference. The other two methods we compared with was MJPEG (green curve)

and H.264 JM ver.18.0 (orange curve)2. In the H.264 JM implementation, we

used default parameters provided by the authors. We varied the performance of

the encoder by changing the quantization parameters. In our encoder we fixed the

parameters for all experiments and we also only varied the quantization parameter.

For optical flow estimation and tracking we used the default parameters set by

the authors of each paper. For the hierarchical segmentation we used 3 levels. In

Figure 7.6 we show the prediction performance of our encoder. The left column

corresponds to the predicted image. Small or zero error (middle column) can be

achieved in most of the image domain. Where large deformations of the domain

occur, the translational model fails (e.g. the face of foreman).

Quantitative results are shown in Figure 7.7 for four video sequences of QCIF

resolution. PSNR scores of the Y-channel are reported. We used 50 frames from

each video sequence 3. It can be seen that our encoder significantly outperforms

the other methods at almost all bit rates. The biggest gain comes at high bit

rates where the gain in PSNR in using our encoder compared to others becomes

significantly large.

Following is a break-down of the contribution of each module to the overall

2The H.264 JM implementation can be found at http://iphome.hhi.de/suehring/tml/
3The video sequences can be found at http://media.xiph.org/video/derf/

116

Figure 7.6: Qualitative results of our encoder. Predicted image using spatial, temporal

and texture synthesis prediction modes (left). Residual error: black corresponds to zero

error, white to large (center). Reconstructed video frames (right).

computational cost. For VGA resolution video, the GPU implementations of the

optical flow, tracking and segmentation algorithms take 10, 2 and 13 seconds

respectively. Segmentation can be ran in parallel with the other two algorithms.

Texture synthesis takes approximately 5 seconds per frame. It was found that the

average encoding time per frame was 21 seconds. The reported computational

time was recorded on a dual core 2.4 GHz desktop with an NVIDIA GeForce

GTX 560 Ti GPU.

117

0 50 100 150 200 250
10

15

20

25

30

35

40

45

P
S

N
R

 (
dB

)

kbps @ 30Hz

Encode Image independently
Difference Image
MJPEG
h264
Our Method

0 50 100 150 200 250
5

10

15

20

25

30

35

40

45

P
S

N
R

 (
dB

)

kbps @ 30Hz

Encode Image independently
Difference Image
MJPEG
h264
Our Method

0 50 100 150 200 250
10

15

20

25

30

35

40

45

P
S

N
R

 (
dB

)

kbps @ 30Hz

Encode Image independently
Difference Image
MJPEG
h264
Our Method

0 50 100 150 200 250
10

15

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

kbps @ 30Hz

Encode Image independently
Difference Image
MJPEG
h264
Our Method

Figure 7.7: Quantitative comparison of our encoder with other methods. Our method

significantly outperforms all other methods (including H.264) in a wide range of kbps

in terms of PSNR. Results shown are for the sequences city (upper left), flower garden

(upper right), mobile (bottom left) and coastguard (bottom right). Comparisons were

ran for a duration of 50 frames.

7.5 Discussion

We have presented a modeling framework for video compression that exploits

the basic phenomenology of optical data-formation, focusing on occlusion and

scale. Temporal consistency is exploited by detecting co-visible regions (as the

complement of occluded regions) and encoding them once, together with a com-

pressed motion model. Spatial consistency is exploited by partitioning the data

into structures (that are encoded by sparse bases) and “texture” (samples from

118

a locally stationary distribution), that can be encoded in ensemble form, and

sampled at decoding. The decision as to what is “properly sampled”, and therefore

can be tracked, as well as what is visible, can only be made by considering multiple

images.

While the compression performance of our approach is demonstrably better

than existing schemes, this is not surprising since the model class we consider

is far larger than that implied in traditional approaches. The obvious downside

is a significant computational complexity. However, we believe that rather than

incrementally refining intrinsically linear superposition models with additive

uncertainty, embracing the full non-linearity implied by occlusion and scaling is

necessary to break the video compression wall and develop the next generation

video compression schemes.

119

CHAPTER 8

Actionable Saliency Detection: Independent

Motion Detection Without Independent Motion

Estimation

A subset of a sensing field (e.g. visual) is ordinarily deemed “salient” if it is

“sufficiently different” from its surroundings. Saliency is therefore a detection and

localization task (illustrated in Fig. 8.1), often motivated by resource constraints:

if one can process only a subset of the data, which subset is most “valuable” or

“informative”?

Traditionally, saliency detection has been agnostic of the underlying task.

More recently, however, several authors have attempted framing saliency detection

in an information-theoretic context, by looking at the “most informative” subset

of the data, where “information” is measured in the traditional sense of Wiener

and Shannon. For instance, Itti and Baldi [IB09] measure the relative entropy

between the prior and the posterior of an image, interpreted as a distribution of

pixel values, and use it as a measure of saliency or “surprise”.

In this paper, we focus on classes of tasks that involve decisions about the

scene, rather than about the image. These include detection, localization, recog-

nition of objects, events, or spatial locations from images, as well as navigation,

manipulation and other spatial control tasks. While often “salient” locations in

120

the image correspond to salient geometric or topological characteristics of the

scene (e.g. occluding boundaries), this is not always the case (e.g. material or

illumination boundaries). Moreover, whether a salient region of the image does

indeed correspond to a geometric or topological characteristic of the scene cannot

be positively ascertained from one image alone; therefore, we are interested in

saliency detection mechanisms that involve multiple images. Of course, because

part of the motivation for detecting salient regions is to expedite processing (at

the expense of a loss in discriminative power), we are interested in temporally

adjacent images (“small baseline”), such as two or more temporally consecutive

frames of a video.

When the camera is static, as in the case of video surveillance, anything that

moves is salient. There is a considerable amount of literature on background

subtraction, that can be thought of as a form of saliency detection for the specific

case of surveillance tasks (see [ISB99] and references therein). However if the

camera is moving, then detecting objects that are moving independently is a

notoriously difficult problem, for it amounts to detection of independent rigid

motions. This involves model selection and regression to find the independently

moving objects and their motion. And yet, even when driving, we can easily spot

a moving animal in the distance. When flying we can detect another flying vehicle,

or vehicles moving on the ground. Several attempts to perform “background

subtraction from moving cameras” [SJK09] have improved efficiency compared

to multi-rigid motion estimation, that was using algebraic geometric methods

[Vid03] or sampling methods that would clearly not be viable for the task of rapid

detection of “informative” regions of a video. Moreover, there is no direct link

between any of these algorithms and a notion of what “informative” means.

A definition of “information” in the context of visual decision tasks [Soa09],

121

Figure 8.1: Detecting salient regions under camera motion: (1st, 3rd): Tracked

feature points (blue) are classified as inliers (green) or outliers (red). (2nd, 4th):

Estimated salient point density obtained by our algorithm.

that draws on ideas from Gibson’s Ecological Approach to Visual Perception

[Gib84], can shed some light on this issue. While the complexity of the image is

not necessarily related to its value in a visual decision task, the complexity of the

part of the image that would be discovered after a finite time interval represents

the “Actionable Information Increment” provided by the “next image” [Soa09].

It is the decrease in uncertainty about the scene provided by the data. Such a

discovery could be due to motion of the viewer, or motion of an object within the

scene, or both. In any case, this suggests that occlusion detection is a natural

form of saliency detection.

Unfortunately, occlusion detection fails to capture important visual phenomena,

and indeed even fails to capture occlusion phenomena in many cases of practical

importance, as we describe next. Therefore, in Sect. 8.2 we propose an alternative

scheme for detecting salient regions in videos.

8.1 Occlusion detection fails to detect occlusions

Occlusions are defined as portions of the domain of an image captured, say, at

time t+ dt, that correspond to (are projections of) portions of the scene that were

occluded from the vantage point where the image at time t was captured. That

122

is, occlusions are something you see in an image but not the other. Unfortunately,

such occlusions cannot always be detected in the image: for the examples we

mentioned above, if a car is seen from an airplane while traveling on a road that

has fairly homogeneous texture, occlusion detection fails. Similarly, a person

walking against a white wall can be explained as the person painted on the wall,

and deforming with it. This is because occlusion detection from images is based

on a hypothesis testing process where the null hypothesis is that portions of two

images are co-visible when there exists a diffeomorphism (“optical flow”) that

takes one image onto the other, up to a residual that is statistically simple (white,

homoscedastic, and independently distributed) [ARS12].

In formulas, we have that for any given subset Ω of the image domain D, where

an image I : D → R is measured at each instant of time, the null hypothesis that

Ω is co-visible between t and t+ dt can be written as:

H0 = {∃ a diffeo w : Ω→ D | I(x, t+ dt)− I(x+ w(x), t)
IID∼ N} (8.1)

where the residual n(x, t)
.
= I(x, t+dt)−I(x+w(x), t) is spatially and temporally

white, independent and identically distributed according to a simple description,

such as a bivariate Normal distribution, N , with diagonal covariance. This means

that co-visible regions are diffeomorphically equivalent up to white noise: there

exists a differentiable and differentially invertible map that takes one image onto

the next, except for a white residual. An occlusion is detected as a violation of the

null hypothesis, that is when no diffeomorphism can be found that can explain

the next image using the previous one and the addition of white noise.

Therefore, a car moving on a road (thus generating an occlusion) can be

explained as a car painted on the road (generating no occlusion), and the road-car

ensemble stretching and compressing to yield images that are indistinguishable

from those actually measured. Yet, we can effortlessly detect moving cars from a

123

moving aerial vehicle (Fig. 8.2,8.3).

8.2 Key idea

The problem with occlusion detection is that equivalence up to a diffeomorphism

is too general, and can explain as ordinary (no violation of the null hypothesis)

situations that we want to consider salient. We would indeed prefer to detect as

salient, any violations of the rigidity assumption, but we do not want to perform

independent detection of multiple rigid bodies, because that strides with our goal

of computational efficiency.

The key idea of this paper is to still pursue saliency detection as violation

of co-visibility, but define co-visibility in terms not of diffeomorphic equivalence,

but rather epipolar equivalence. This means that, of all possible diffeomorphisms

w : D → D, we only consider those that are compatible with an overall rigid

motion of the viewer (ego-motion).

In principle, this could be done by computing the “dominant motion”, and

then detecting outlier regions as salient. However, we do not actually care to even

estimate the motion of the viewer; we just want to compute the discriminant for

the null hypothesis (8.1) in the most efficient way, so that it would depend on

the smallest possible number of free parameters. As we show in Sect. 8.3, this

number is two.

At face value, what we propose looks more complicated than testing for diffeo-

morphic equivalence H0, for we would have to enforce the additional condition

that the diffeomorphism is compatible with a rigid motion. In formulas, after

124

testing H0 we would have to test for:

H1 ={∃ V ∈ S2, ω ∈ R3, Z : D → R+ |

w(x) = π(ω̂x̄Z(x) + V)} (8.2)

where V is the translational velocity direction, ω is the rotational velocity vector,

Z(x) is the depth map, x̄ = [xT 1]T is the homogeneous coordinate of x, and π is

a canonical central projection 1. In words, in order to determine whether a region

is salient, we would have to search at each instant for all possible translational

directions, rotational velocities and depth maps until none of them fits the data

up to a white residual. The two hypotheses can be tested simultaneously by

substituting the expression of w in (8.2) into (8.1). The result would be akin

to devising a robust ego-motion estimation scheme, whereby one simultaneously

tries to find the translational direction V , rotational velocity ω, depth map Z,

and occluded region Ω. This has been indeed done before in the literature on

“dominant motion estimation” [IRP92] and robust motion estimation [SL03], and

relates to robust statistics [Hub81] and outlier rejection in motion estimation

[FB81].

This would already be an improvement on multi-body motion segmentation.

If we have a number, say K, of independently moving objects, and N sensors,

then multiple motion estimation requires inferring N + 5K unknown parameters

[Vid03]. Dominant motion estimation, on the other hand, only requires inferring

N + 5 parameters in order to build the discriminant for H0 ∪H1. Nevertheless,

when N is large, this becomes prohibitive. When the calibration of the camera is

unknown, in addition to these parameters one would also have to infer 5 additional

1Note that ω̂
.
=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 belongs to the Lie algebra of the skew-symmetric

matrices so(3)
.
= {S|ST = −S}.

125

parameters (optical center x0 ∈ D, focal length f , aspect ratio s and skew θ).

As we have already anticipated, our goal is not to estimate ego-motion, but to

detect salient regions in the image based on violation of rigidity. Therefore, we

seek for ways to reduce the discriminant to its minimal form, which we do in Sect.

8.3.

8.3 Derivation of the discriminant

If we consider the instantaneous motion of the scene relative to the viewer, where

the entire scene is moving rigidly, the deformation of the entire domain of the

image can be explained as a function of the motion (translational velocity direction

V and rotational velocity ω) and the shape of the scene, described by a scalar

function from the image domain D to the positive reals, Z : D → R+, as described

in (8.2). If we call y(x) ∈ R2 the velocity of the projection of the point with

coordinates x̄Z(x) ∈ R3 onto the image, we have that [SFP94]:

y(x) = A(x)
V

Z(x)
+ B(x)ω (8.3)

where:

A(x)
.
=


 1 0 −x1

0 1 −x2


 (8.4)

B(x)
.
=


 −x1x2 1 + x2

1 −x2

−1− x2
2 x1x2 x1


 (8.5)

Traditional dominant motion estimation and robust statistical approaches search

for the unknown motion V, ω and range map Z(·) that solve the following opti-

mization problem:

Ẑ, V̂ , ω̂ = arg min

∫

D

‖y(x)−A(x)
V

Z(x)
− B(x)ω‖Hdx (8.6)

126

where ‖ · ‖H denotes a robust norm, for instance a Huber norm [Hub81]. After

this is done, one would find the salient regions that violate this model, that is:

Ω
.
= {x ∈ D | ‖y(x)−A(x)

V̂

Ẑ(x)
− B(x)ω̂‖ > ε} (8.7)

where ε is related to the regularization parameter in the Huber norm. Note that

the region Ω can, and in general will be multiply-connected, so even though this is

a binary classification problem, it enables detecting any number of independently

moving objects, each projecting onto a different simply-connected subset of the

image domain. Furthermore, when (8.6) is solved in the continuum, regularization

on Z has to be imposed (this is not necessary when (8.6) is computed at a sparse

set of locations). This is laborious, especially because the procedure of finding

the motion V̂ , ω̂ and the range map Ẑ has to be iterated once the outlier set Ω is

removed, which in turn changes the motion and range estimates, resulting in a

non-convex optimization problem.

Therefore, we resort to a trick introduced by Heeger and Jepson [HJ92],

whereby one solves the problem above for the case of the `2 norm, by exploiting

the geometry of Hilbert spaces to “eliminate” the unknown depths Z(x) and

unknown rotational velocity ω from (8.6). This can be done easily since the model

(8.3) is linear in 1
Z

and ω, and therefore one can solve-and-substitute, thereby

leaving a set of constraints on the unknown V alone. It has been shown [CBS00]

that this can be done without altering the topology of the solution space, in the

sense that no spurious solutions are introduced by the algebraic manipulation.

Formally, this can be accomplished (Sect. 8.4) by rewriting the model (8.3)

in terms of an operator C(V) that multiplies all the unknown depths and rota-

tional velocity, then multiplying by the orthogonal projector operator Ĉ(V) that

eliminates the dependency on ω and Z, and leaves constraints on the unknown V

only.

127

8.4 Computation of the optimal discriminant

Following the discussion in Sect. 8.3, salient points x ∈ Ω will be detected as a

violation of the hypothesis provided by the model (8.3). Equivalently, one can

seek to infer V in a robust fashion and detect Ω as the outlier set. We focus

on a finite number of N sparse measurements, xi, i = 1, . . . , N and introduce a

diagonal weight matrix W ∈ R2N×2N . Ideally, W should be zero except for points

that follow (8.3). Writing (8.3) as a system of linear equations for all points and

introducing W as a weight matrix we have:

WY (X) =WC(V)
[
p(x1) . . . p(xN) ω

]T
(8.8)

where, p(xi)
.
= 1

Z(xi)
, Y

.
= [y(x1)

T , . . . , y(xN)T]T , X
.
= [xT1 , . . . , x

T
N]T , W .

=

diag(w1, w2, . . . , w2N−1, w2N),

C(V)
.
=




A(x1)V B(x1)

. . .
...

A(xN)V B(xN)


 (8.9)

For any (unknown) V , we can solve for P
.
= [p(x1) . . . p(xN)]T and ω using Least

Squares:

[P, ω]T = (WC(V))†WY (X) (8.10)

.
= (C(V)TWTWC(V))−1C(V)TWTWY (X)

For readability purposes, we will henceforth drop the explicit dependence of C on

V and of Y on X. We can then plug the solution of this equation back to the

model to get WY =WC(WC)†WY . Rearranging, we get:

Ĉ(V)Y
.
=
(
I −WC(WC)†

)
WY = 0 (8.11)

The above constraint is true even in the presence of outliers when the elements

of W corresponding to those equations are 0. In practice, this cannot be achieved

128

though, due to the presence of noise and unmodeled phenomena. Assuming

that the error in motion estimation follows a Gaussian distribution the Least

Squares estimation of P and ω is optimal. Hence it is important to calculate W
properly so that inference of V is improved. To estimate V we solve the following

minimization problem:

minimize
V

ψ(V) =
1

2
||Ĉ(V)Y ||22 (8.12)

where V ∈ S2. To calculate the weight matrix W we employ a more traditional

M-estimator, as customary in robust statistics, that does not explicitly infer W ,

but instead uses a composite norm residual where the weight of the outliers is

reduced. This yields a minimal model, where the only unknowns are the directional

coordinates of the translational velocity V , as discussed in the previous section.

Since we expect that most points in the scene will move rigidly, we anticipate

that Ĉ(V)Y is sparse. We would hence want to choose the diagonal elements

of W to enhance sparsity of the residual. In addition, every pair of elements of

Ĉ(V)Y , corresponds to the residual for a single point and hence this should also

be taken into account when estimating W . The outline of the algorithm is given

below.

where 1 is the indicator function. Note that this is a generalization of the case

proposed by [HJ92]. The authors of [HJ92] minimized (8.12) with W = I using

exhaustive search. In that case the above problem is reduced to minimizing

C⊥Y
.
=
[
I − C(CTC)−1CT

]
Y . By introducing W, we solve this more general

minimization problem to improve outlier rejection. Since the problem is non-

convex, we use gradient descent with backtracking line search to estimate V. The

details of the computation of the gradient of (8.12) are provided in Appendix A.

We classify a point as an outlier as follows: define ê = [ê1 . . . ê2N]T
.
= Ĉ(V (K), I)Y

and Ei
.
= [ê2i−1, ê2i]

T for i = 1, . . . , N . A point i is classified as an outlier when

129

Algorithm 7: Iterative reweighted subspace minimization (IRWSM).

Initialize W(1) = I, V (0) = [1, 0, 0]T

foreach k = 1, 2, 3, . . ., K do

Solve the following problem initializing with V (k−1):

V̂ (k) = arg min
V

1
2
||Ĉ(V,W(k))Y ||22

e(k) = Ĉ(V̂ (k), I)Y

λ = 1/mean(||e(k)||)
foreach i = 1, 2, 3, . . ., N do

w
(k+1)
2i−1 = w

(k+1)
2i = 1

||[e(k)2i−1,e
(k)
2i]||2+ε

W(k+1) = diag(w
(k+1)
1 , . . . , w

(k+1)
2N)

V (k+1) := V̂ (k)ash‖V̂ (k)‖

||Ei||2 exceeds ε. The threshold ε can be determined using various techniques, one

of which is explained in Sect. 8.6.

8.5 Effects of (mis)calibration

The model we have derived assumes that the image coordinates xi and their

corresponding velocities yi are calibrated, that is they are available in metric units

relative to the reference frame having origin at the principal point (intersection of

the optical axis with the image plane), with the optical axis orthogonal to the

image plane and aligned with the spatial Z axis. Most often, however, coordinates

and velocities are given in pixel units, relative to, say, the top-left corner of the

image. One cannot expect, in general, to just be able to plug the latter into the

equation and get a sensible answer. Therefore, in this section we explore the

effects of miscalibration on outlier detection.

We first show that knowledge of the principal point and the focal length does not

130

affect the classification of outliers. We introduce the calibration matrix K ∈ R3×3

in (8.3) and rewrite it in homogeneous coordinates:


 y

0


 = K


 AV B

0 0




 1/Z

ω




=




fsx fsθ Ox

0 fsy Oy

0 0 1





 A

V
Z

+ Bω
0


 (8.13)

From (8.13) it is obvious that y(x) is independent of (Ox, Oy). On the other hand,

also obvious from (8.13), the focal length and scale do indeed affect the estimation

of the velocity. But the focal length does not affect the outlier distribution: writing

the expressions of y, from (8.13), similarly as in Sect. 8.4, we get:

WY (X) = fWKC(V)[P, ω]T

.
= fD[P, ω]T (8.14)

where K ∈ R2N×2N is a block diagonal matrix with its block diagonal entries being

K̂
.
=


 sx sθ

0 sy


 ∈ R2×2. Solving for the same unknowns as before:

[P, ω]T = (fD)†WY (X) = (f 2DTD)−1fDTWY (X)

WY (X) = fD(f 2DTD)−1fDTWY (X)

= D(DTD)−1DTWY (X) (8.15)

Focal length is cancelled out in the expression and hence it is not necessary in

order to employ our algorithm. In addition, since scale consists of two positive

real numbers (or one number, if the pixels are square, or if the form factor of

the pixel is known), one can simply augment the search from two parameters,

corresponding to V , to four parameters, corresponding to sx, sy . In the following

experiments we normalize the pixel coordinates to [−1, 1]. Regarding the skew of

131

the pixel array, it can be assumed to be zero; that is, the pixels are rectangular,

and not generic parallelograms.

8.6 Empirical evaluation

We tested our algorithm on 15 sequences. The sequences People-1, People-2,

Cars-3, Cars-4, Cars-5, Cars-6 shown in this order in Fig. 8.4 and Cars-2/06

are from the Hopkins 155 motion segmentation dataset [TV07] and ground truth

was provided. In addition, the trajectories of feature points are provided by the

dataset and are available over the whole duration of the video sequence. This

makes the dataset appropriate for comparison with Sheikh et al. [SJK09] which

requires the trajectories to be present in an extended period of time.

These sequences contain objects that move slowly between consecutive frames,

they are close to the camera and are moving independently from it.

The sequences Traffic-1,-2,-3,-4 (Fig. 8.2) were recorded from a helicopter

monitoring a traffic jam. The motion of the camera covers a wide variety of

translations and rotations. Bridge-1,-2,-3 (Fig. 8.3) were taken from an airliner

approaching Boston Logan airport. People-3 (second row in Fig. 8.1) is an aerial

view of closed distanced objects. These 8 sequences were manually annotated. In

addition, to extract trajectories in these sequences we used the code provided by

[SBK10] that yields dense point trajectories. We used the Harris corner detector

[HS88] to eliminate trajectories on textureless regions. Subsequently, an average

of 1300 trajectories per frame are left. Since the extracted trajectories are not

guaranteed to be present in all frames hence these sequences are not suitable for

comparison with [SJK09]. On the other hand, our algorithm is not limited by

the temporal support of trajectories. Using the resulting trajectories for a pair of

132

Figure 8.2: Four aerial views of a motorway. In all images cars in the right lane

are stationary and cars in the left lane are moving. The true outliers in these

cases are the moving cars in the left lane. The first row shows the dense tracked

points in each image. The second row shows in color the detected outliers. Color

convention is the same as in Fig. 8.4.

frames in a sequence (we use the middle pair), we calculate the optical flow i.e.

y(xi) for i = 1, . . . , N which is then used as the input to Algorithm 7 to estimate

V and determine the salient regions.

To distinguish between inliers and outliers, we calculate ||Ei||2 for each point

xi as its residual. We then construct the histogram of the residuals and find the

local minimum nearest to the 0 residual bin. The residual value corresponding to

this bin is selected as the threshold ε.

We successfully detect most of the salient regions in all sequences. In Fig. 8.1,

8.4, 8.2 and 8.3 we show the tracked regions and the salient regions as classified

by our method. In Table 8.1, we compare the performance of our algorithm to

three other methods using the F-measure: (i) RANSAC [FB81] with epipolar

constraint. We fixed the number of iterations to 1000 and varied the threshold

for each sequence to obtain the best results, (ii) we implemented the original

method proposed by [HJ92] but minimized it with gradient descent rather than

133

Figure 8.3: Three aerial views of a bridge taken from an airliner during a turn

approaching Boston’s airport. The first row shows the images with the tracked

points and the second highlights the salient regions. The color codes are the same

as in Fig. 8.4.

exhaustive search i.e. we used K = 1 and W = I as parameters in our algorithm,

and (iii) we implemented the outlier detection method proposed by Sheikh et al.

[SJK09] that enforces the rank constraint on trajectories using RANSAC. We also

fixed the number of iterations to 1000 and varied the threshold to obtain the best

results. This method requires trajectories available in an extended period of time

which means it is only possible to compare with it on the Hopkins 155 dataset.

For their method, in all experiments, we used either trajectories of length 30 or of

the whole video, whichever was the smallest (27 frames on average).

Our algorithm significantly outperforms the other methods in 13 out of 15

sequences and achieves comparable results in the other two, Table 8.1. Although

[SJK09] uses a large number of frames to detect outliers, our algorithm still

134

performs better even though we make use of just 2 frames to make a decision.

In addition, our method automatically chooses the threshold value whereas for

RANSAC and [SJK09] we manually chose the best one. Even so, we still perform

significantly better than both of these methods. For the Hopkins 155 dataset, it

takes on average 32.6 seconds for a non-optimized MATLAB implementation of

our algorithm to converge to a solution, whereas for the rest of the sequences,

it takes 68 seconds with an average of 1300 tracked points. We terminate our

minimization at each iteration when ||V (k) − V (k−1)||/||V (k−1)|| < 10−3. The

average runtime of RANSAC was 2.3 seconds and that of [SJK09] was 2.6 seconds.

Experiments were ran on an Intel 2.4 GHz dual core processor machine.

Failure modes. The most significant failure case of our method is shown in

Fig. 8.3. Moving cars at the far end of the bridge are not detected. This can

be accounted to the fact that the outliers that are not detected are far from the

camera and they appear stationary due to their relatively small motion.

8.7 Discussion

We have presented a model for detecting “salient” regions in an image that

correspond to objects that are moving in a way that is incompatible with a

single rigid motion. Note that, even if the motion is rigid, the deformation

it induces on the domain of the image is, in general, as complex as a general

diffeomorphism, depending on the shape of the scene, and even more complex

if one considers occlusions. Therefore, simple “background subtraction” relative

to a small-dimensional parametric motion model (such as an homography) does

not work in general. Even occlusion detection, that in principle can be used for

testing the co-visibility hypothesis, fails in the presence of objects moving on a

135

People-1 People-2 Cars-2/06 Cars-3 Cars-4 Cars-5 Cars-6 People-3

Ours 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.91

Heeger & Jepson [HJ92] 0.35 0.06 0.43 0.24 0.22 0.69 0.11 0.88

RANSAC 0.64 0.77 0.54 0.69 0.21 0.65 0.56 0.69

Sheikh et al. [SJK09] 0.91 0.68 0.95 0.90 0.94 0.93 0.80 -

Traffic-1 Traffic-2 Traffic-3 Traffic-4 Bridge-1 Bridge-2 Bridge-3

Ours 0.78 0.80 1.00 0.93 0.55 0.52 0.63

Heeger & Jepson [HJ92] 0.78 0.80 1.00 0.93 0.54 0.51 0.63

RANSAC 0.11 1.00 0.11 0.35 0.49 0.60 0.50

Sheikh et al. [SJK09] - - - - - - -

Table 8.1: Comparison on salient point detection performance of our algorithm

against [HJ92], RANSAC under epipolar constraint and [SJK09] in terms of the

F-measure. We compared the performance on 15 sequences. The ground truth

and trajectories for the first 7 sequences were provided by the Hopkins 155 dataset.

The last 8 were manually annotated by the authors and trajectories were extracted

using [SBK10]. Our algorithm significantly outperforms all other 3 methods in

almost all sequences.

homogeneous background.

Therefore, we have proposed a scheme to test for violations of co-visibility,

relative to an epipolar domain deformation (as opposed to a general diffeomorphic

domain deformation) using tools of robust statistics, and a simple expedient

to eliminate motion and structure parameters that do not affect the outlier

distribution.

We have also shown that accurate calibration of the camera is not necessary:

while calibration error clearly affects the motion estimates, we have shown that

some calibration parameters (principal point, focal length) do not affect the

decision boundary between inlier and outlier, so they can be ignored for the

136

purpose of saliency detection. Scale can either be coarsely calibrated, or estimated

as a hidden variable in the regression/classification task.

Failure modes of our algorithm, illustrated in the experiments, include cases

where the objects are too small or moving too slowly. As with any classification

scheme, there is a dependency on a scalar parameter (detection threshold) that

we have chosen using standard guidelines from robust statistics. Our algorithm

is currently not operating in real time. However, the problem has significant

structure that could be exploited to devise efficient implementations in hardware

platforms in the near future.

137

Figure 8.4: Sample results from the Hopkins 155 dataset: Odd rows: Images with

tracked points. Red and green points show the locations of tracked points as

predicted by the model. Points in green are the points that are classified as inliers

and in red those that are classified as outliers. Blue dots (not visible for inlier

points) are the true positions of tracked points. Even rows: Images showing in

color the detected outliers. The color corresponds to a sum of Gaussians centered

at each salient point.

138

CHAPTER 9

Discussion

Video analysis has become a fundamental research problem following the rise of

video consumption over multiple mediums. Users are more than ever interested

in interacting with their medium and video consumption is becoming increasingly

an active action. As a result, providing users with side information that stems

out from video content is becoming a huge challenge for automatic mechanisms.

Video analysis is required to perform scene/video understanding, infer semantics

and encode such information in scene representations that could be utilized in a

series of applications.

In this work, scene representations for video analysis were discussed. In

particular, the goal was to design and infer representations that capture properties

of the scene that could benefit video compression. Video frames were viewed as

projections of an underlying scene. The projections were assumed to induce two

types of regions, “structures” and “textures”.

Representations for structures were designed and inferred when multiple

structure regions are present in a frame. The first video coding system presented

exploited only the temporal redundancy of visual structures; the remaining regions

were left un-modeled and sent to a background layer. The approach was used as

a wrapper around HEVC/H.264 and it was shown that it can outperform both in

terms of a rate-distortion comparison.

139

Textures were introduced as the complementary region type to structures,

which exhibit spatial regularity. A representation that exploits the spatial re-

dundancy was designed that required considerably less space than the input

texture. The representation is useful for texture synthesis in images and video

and for applications such as video hole-filling. Hence, an image and video texture

synthesis algorithm was proposed that is able to synthesize multiple textures

simultaneously without the need of segmentation. A criterion that measures

statistical and structural similarity was also proposed that can be used to measure

similarity of two textures. Representations of structures and textures were then

utilized simultaneously to form a complete video compression system. The texture

representation was also extended to capture transformations in both the range

and the domain of the texture. Doing so, can provide additional benefits in terms

of compression. Further criterions that measure similarity of textures were also

proposed.

In addition to the aforementioned applications, texture segmentation was

also explored. By breaking the segmentation problem into a sequence of binary

partitions and then uniting the region proposals using pairwise affinities, it was

possible to segment textures in natural images in the presence of clutter and

scale variability. Texture segmentation was utilized in a video encoding scheme to

produce an extension to previous chapters, by considering a tight partition of the

video frames respecting object boundaries and the statistics of natural images.

Furthermore, a video compression system that exploits additional properties

of the scene was presented. In particular, occlusion and scale were discussed,

structures/textures were modeled and an explicit prediction mode for homogeneous

regions was introduced. Segmentation was utilized as part of the structure/texture

partition inference and optical flow was introduced to aid the computation of

140

motion vectors of the regions.

Finally, an additional application of video analysis was demonstrated, that of

independent motion detection of objects moving over a homogeneous background.

Under these conditions, the objects do not violate the co-visibility hypothesis,

hence do no generate occlusions. Instead since these regions correspond to ones

that violate a single rigid motion, they were detected by determining the outliers

of the camera motion model. Regions that were determined as outliers were

classified as “salient” regions, while the rest were classified as background.

While the focus of the thesis was on video compression, the representations pre-

sented have multiple utilities ranging from video/image hole-filling (video/image

editing), texture synthesis (computer graphics), texture segmentation (computer

vision, video compression) and independent motion detection (surveillance, mon-

itoring, etc). While low-level approaches have driven research work in video

compression, it is believed that further breakthroughs would come by instead

modeling higher-level entities, such as the underlying scene. The latter approach

can also provide information about the scene, useful for other applications that

include video classification and retrieval.

141

APPENDIX A

Actionable Saliency Detection: Derivation of

the Discrimant

To calculate ∇ψ(V) =
[
∂ψ(V)
∂V

]T
we use the following conventions. The derivative

of a function f : Rn → Rm is given by an m × n matrix of partial derivatives

[Dfij] = ∂fi(x)
∂xj

. For A ∈ Rn×m and f : Rn×m → Rp×q the derivative is given

by∂f(A)
∂A

= ∂vec(f(A))
∂vec(A)

∈ Rpq×mn where the vec operator stacks the columns of a

matrix on top of each other. Using these definitions and common rules for chain

and product rules we can derive
[
∂ψ(V)
∂V

]T
. We can decompose ∂ψ(V)

∂V
as follows:

∂ψ(V)

∂V
=

∂ψ(Ĉ)

∂vec(Ĉ)

∂vec(Ĉ(WC))

∂vec(WC)

∂vec(WC)

∂vec(C)

∂vec(C(V))

∂V
(A.1)

The four terms are given by the following equations:

∂ψ(Ĉ)

∂vec(Ĉ)
= (Wx)T ⊗ (Wx)T Ĉ (A.2)

Using the product rule we can get ∂vec(Ĉ(WC))
∂vec(WC)

. Define f1(WC) = WC and

g1(WC) = (CTWTWC)−1CTWT . We then have:

∂vec(Ĉ(WC))

∂vec(WC)
=

∂

∂vec(WC)

(
I −WC(CTWTWC)−1CTWT

)
(A.3)

= − ∂

∂vec(WC)
WC(CTWTWC)−1CTWT (A.4)

= −
(
g1(WC)T ⊗ I2N

)
f ′1(WC) (A.5)

− (I2N ⊗WC) g′1(WC) (A.6)

142

The derivative of f1(WC) with respect to WC is simply f ′1(WC) = I2N(N+3). For

the derivative of g1(WC) we need to use the product rule. Define f2(WC) =
(
(WC)TWC

)−1
and g2(WC) = (WC)T . Then we can calculate the derivative of

g1(WC) using the following:

g′1(WC) = (g2(WC)T ⊗ IN+3)f ′2(WC) + (I2N ⊗ f2(WC))g′2(WC) (A.7)

The derivative of g2(WC) is g′2(WC) = T2N,N+3, where TN,M ∈ RMN×MN is a

permutation matrix such that

TN,Mvec(A) = vec(AT) (A.8)

To calculate the derivative of f2(WC) we need to use the chain rule. Define

f3(X) = X−1 and g3(WC) = (WC)TWC. So, f3(g3(WC)) = f2(WC). The

derivative of f ′2(WC) is:

f ′2(WC) = f ′3((WC)TWC)g′3(WC) (A.9)

From standard results:

f ′3((WC)TWC) = −(((WC)TWC)−T ⊗ ((WC)TWC)−1) (A.10)

g′3(WC) =
(
I(N+3)2 + T(N+3),(N+3)

) (
IN+3 ⊗ (WC)T

)
(A.11)

143

Therefore:

f ′2(WC) = f ′3((WC)TWC)g′3(WC) (A.12)

= −(((WC)TWC)−T ⊗ ((WC)TWC)−1) (A.13)

(
I(N+3)2 + T(N+3),(N+3)

) (
IN+3 ⊗ (WC)T

)
(A.14)

g′1(WC) = (g2(WC)T ⊗ IN+3)f ′2(WC) (A.15)

+(I2N ⊗ f2(WC))g′2(WC) (A.16)

= − (WC ⊗ IN+3) (A.17)

×
((

(WC)TWC
)−T ⊗

(
(WC)TWC

)−1
)

(A.18)

×
(
I(N+3)2 + T(N+3),(N+3)

) (
IN+3 ⊗ (WC)T

)
(A.19)

+
(
I2N ⊗

(
(WC)T (WC)

)−1
)
T2N,N+3 (A.20)

∂vec(Ĉ(WC))

∂vec(WC)
= −

(
g1(WC)T ⊗ I2N

)
f ′1(WC) (A.21)

− (I2N ⊗WC) g′1(WC) (A.22)

= −
[(

(CTWTWC)−1CTWT)T ⊗ I2N

)
I2N(N+3)

]
(A.23)

+ (I2N ⊗WC) (A.24)

× (WC ⊗ IN+3) (A.25)

×
((

(WC)TWC
)−T ⊗

(
(WC)TWC

)−1
)

(A.26)

×
(
I(N+3)2 + T(N+3),(N+3)

) (
IN+3 ⊗ (WC)T

)
(A.27)

+
(
I2N ⊗

(
(WC)TWC

)−1
)
T2N,(N+3) (A.28)

(A.29)

The derivative ∂vec(WC)
∂vec(C)

is given by:

∂vec(WC)

∂vec(C)
= IN+3 ⊗W (A.30)

144

In addition ∂vec(C(V))
∂V

is given by

∂vec(C(V))

∂V
=




A1

O2N,3

A2

O2N,3

...

AN

O6N,3




(A.31)

which is the final term of the derivative of ∂ψ(V)
∂V

. OM,N is an M ×N matrix with

all elements equal to 0.

145

References

[AMF11] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik.
“Contour Detection and Hierarchical Image Segmentation.” TPAMI,
2011.

[ARS11] A. Ayvaci, M. Raptis, and S. Soatto. “Sparse Occlusion Detection
with Optical Flow.” IJCV, 2011.

[ARS12] A. Ayvaci, M. Raptis, and S. Soatto. “Sparse Occlusion Detection
with Optical Flow.” IJCV, 2012.

[BA96] M. Black and P. Anandan. “The robust estimation of multiple motions:
parametric and piecewise smooth flow fields.” Computer Vision and
Image Understanding, 1996.

[BAC96] Andrew C. Beers, Maneesh Agrawala, and Navin Chaddha. “Render-
ing from Compressed Textures.” In ACM SIGGRAPH, 1996.

[BBP04] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. “High accuracy
optical flow estimation based on a theory for warping.” ECCV, 2004.

[BEL01] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman. “Texture
mixing and texture movie synthesis using statistical learning.” TVCG,
2001.

[BM10] T. Brox and J. Malik. “Object Segmentation by Long Term Analysis
of Point Trajectories.” ECCV, 2010.

[BMS97] P. S. Bradley, O. L. Mangasarian, and W. N. Street. “Clustering via
Concave Minimization.” NIPS, 1997.

[BNS10] S. Boltz, F. Nielsen, and S. Soatto. “Texture Regimes for Entropy-
Based Multiscale Image Analysis.” ECCV, 2010.

[Bou11] N. Bouguila. “Texture discrimination using local features and count
data models.” CCCA, 2011.

[BVS03] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher. “Simultaneous
structure and texture image inpainting.” TIP, 12(8):882–889, 2003.

[CBS00] A. Chiuso, R. Brockett, and S. Soatto. “Optimal structure from
motion:local ambiguities and global estimates.” IJCV, 2000.

146

[CBS05] T. Cour, F. Bénézit, and J. Shi. “Spectral Segmentation with Multi-
scale Graph Decomposition.” CVPR, 2005.

[CE05] T.F. Chan and S. Esedoglu. “Aspects of Total Variation Regularized
L1 Function Approximation.” SIAP, 2005.

[CFJ08] V. Cheung, B. J Frey, and N. Jojic. “Video epitomes.” IJCV, 2008.

[CIS11a] CISCO. “Entering the Zettabyte Era, Visual Networking Index.”
CISCO VNI, 2011.

[CIS11b] CISCO. “Entering the Zettabyte Era, Visual Networking Index.”
CISCO VNI, 2011.

[CIS14] CISCO. “Entering the Zettabyte Era, Visual Networking Index.”
CISCO VNI, 2014.

[CM02] D. Comaniciu and P. Meer. “Mean Shift: A Robust Approach Toward
Feature Space Analysis.” TPAMI, 2002.

[CMK14] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi.
“Describing Textures in the Wild.” CVPR, 2014.

[CS10] J. Carreira and C. Sminchisescu. “Constrained Parametric Min-Cuts
for Automatic Object Segmentation.” CVPR, 2010.

[CV01] T. F. Chan and L. A. Vese. “Active Contours without Edges.” TIP,
2001.

[CYS04] T. Cour, S. Yu, and J. Shi. “Normalized Cut Segmentation Code.”
University of Penn, Computer and Information Science Department,
2004.

[DCW03] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. “Dynamic textures.”
IJCV, 2003.

[DUH09] M. Donoser, M. Urschler, M. Hirzer, and H. Bischof. “Saliency Driven
Total Variation Segmentation.” ICCV, 2009.

[EF01] Alexei A. Efros and William T. Freeman. “Image Quilting for Texture
Synthesis and Transfer.” Proc. of ACM SIGGRAPH, 2001.

[EH10] Ian Endres and Derek Hoiem. “Category independent object propos-
als.” ECCV, 2010.

147

[EL99] A. Efros and T. Leung. “Texture Synthesis by Non-parametric Sam-
pling.” ICCV, 1999.

[FB81] M. A. Fischler and R. C. Bolles. “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography.” CACM, 1981.

[Fen03] Simon Fenney. “Texture compression using low-frequency signal mod-
ulation.” In ACM SIGGRAPH, 2003.

[FH04] Pedro Felzenszwalb and Daniel Huttenlocher. “Efficient Graph-Based
Image Segmentation.” IJCV, 2004.

[FL11] WT Freeman and C. Liu. “Markov random fields for super-resolution
and texture synthesis.” Advances in Markov Random Fields for Vision
and Image Processing, 2011.

[GG84] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images.” TPAMI, 1984.

[Gib84] J. J. Gibson. The ecological approach to visual perception. LEA, 1984.

[GS12] G. Georgiadis and S. Soatto. “Scene-Aware Video Modeling and
Compression.” In Data Compression Conference. April 2012.

[GZW03a] C. Guo, S. Zhu, and Y. N. Wu. “Toward a Mathematical Theory of
Primal Sketch and Sketchability.” ICCV, 2003.

[GZW03b] C. E. Guo, S. C. Zhu, and Y. N. Wu. “Towards a Mathematical
Theory of Primal Sketch and Sketchability.” ICCV, 2003.

[GZW07] C. Guo, S. C. Zhu, and Y.N. Wu. “Primal sketch: Integrating structure
and texture.” CVIU, 2007.

[Har05] R. M. Haralick. “Statistical and structural approaches to texture.”
Proceedings of the IEEE, 2005.

[HB95] D. J. Heeger and J. R. Bergen. “Pyramid-based texture analy-
sis/synthesis.” ACM SIGGRAPH, 1995.

[HJ92] D.J. Heeger and A.D. Jepson. “Subspace methods for recovering rigid
motion I.” IJCV, 1992.

[HS81] B.K.P. Horn and B.G. Schunck. “Determining optical flow.” Artificial
Intelligence, 1981.

148

[HS88] C. Harris and M. Stephens. “A combined corner and edge detector.”
Alvey Vision, 1988.

[Hub81] P.J. Huber. Robust statistics. Wiley, New York, 1981.

[IB09] L. Itti and P. Baldi. “Bayesian surprise attracts human attention.”
Vision research, 2009.

[IRP92] M. Irani, B. Rousso, and S. Peleg. “Detecting and tracking of multiple
moving objects using temporal integration.” ECCV, 1992.

[ISB99] Y. Ivanov, C. Stauffer, A. Bobick, and WEL Grimson. “Video surveil-
lance of interactions.” CVPR, 1999.

[ITU] ITUT-Recommendations. “http://www.itu.int/itu-
t/recommendations/.”.

[JC73] W.S. Jewell and CALIFORNIA UNIV BERKELEY OPERA-
TIONS RESEARCH CENTER. Credible Means Are Exact Bayesian
for Exponential Families. Defense Technical Information Center, 1973.

[JFK03] N. Jojic, B. J. Frey, and A. Kannan. “Epitomic analysis of appearance
and shape.” ICCV, 2003.

[JM008] “H.264/AVC JM Reference Software.”, August 2008.

[Jul62] B. Julesz. “Visual pattern discrimination.” IRE Trans info theory,
IT-8, 1962.

[Jul81] B. Julesz. “Textons, the elements of texture perception and their
interactions.” Nature, 1981.

[KEB05] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. “Texture optimization
for example-based synthesis.” Proc. of ACM SIGGRAPH, 2005.

[KEM09] I. Kokkinos, G. Evangelopoulos, and P. Maragos. “Texture analysis
and segmentation using modulation features, generative models, and
weighted curve evolution.” PAMI, 31(1):142–157, 2009.

[Kol06] V. Kolmogorov. “Convergent tree-reweighted message passing for
energy minimization.” PAMI, 2006.

[KSE03] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. “Graphcut
Textures: Image and Video Synthesis Using Graph Cuts.” ACM Trans.
Graph., 2003.

149

[KWR06] A. Kannan, J. Winn, and C. Rother. “Clustering Appearance and
Shape by Learning Jigsaws.” NIPS, 2006.

[Lin98] T. Lindeberg. Edge Detection and Ridge Detection with Automatic
Scale Selection. Cambridge University Press, 1998.

[LK81] B. Lucas and T. Kanade. “An iterative image registration technique
with an application to stereo vision.” IJCAI, 1981.

[LLH04] Y. Liu, W-C Lin, and J. H. Hays. “Near-Regular Texture Analysis
and Manipulation.” SIGGRAPH, 2004.

[LLX01] Lin Liang, Ce Liu, Yingqing Xu, Baining Guo, and Heung yeung
Shum. “Real-time texture synthesis by patch-based sampling.” Proc.
of ACM Transactions on Graphics, 2001.

[LM01] T. Leung and J. Malik. “Representing and recognizing the visual
appearance of materials using three-dimensional textons.” IJCV,
2001.

[LS11] T. Lee and S. Soatto. “Video-based descriptors for object recognition.”
Image and Vision Computing, 2011.

[LSP05] S. Lazebnik, C. Schmid, and J. Ponce. “A sparse texture representation
using local affine regions.” PAMI, 2005.

[LTL05] Y. Liu, Y. Tsin, and W. C. Lin. “The promise and perils of near-regular
texture.” IJCV, 2005.

[LYT08] Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T.
Freeman. “SIFT Flow: Dense Correspondence across Different Scenes.”
ECCV, 2008.

[M 71] William M. Rand. “Objective Criteria for the Evaluation of Clustering
Methods.” JASA, 1971.

[ME07] Tomasz Malisiewicz and Alexei A. Efros. “Improving Spatial Support
for Objects via Multiple Segmentations.” BMVC, 2007.

[Mei05] M. Meilǎ. “Comparing clusterings: an axiomatic view.” ICML, 2005.

[MFT01] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A Database of Human
Segmented Natural Images and its Application to Evaluating Seg-
mentation Algorithms and Measuring Ecological Statistics.” ICCV,
2001.

150

[MM02] B. S. Manjunath and W. Y. Ma. “Texture features for browsing and
retrieval of image data.” PAMI, 2002.

[MP90] J. Malik and P. Perona. “Preattentive texture discrimination with
early vision mechanisms.” JOSAA, 1990.

[MP12] Pavlos Mavridis and Georgios Papaioannou. “Texture Compression
using Wavelet Decomposition.” Proceedings of Pacific Graphics, 2012.

[MRE04] G. Mori, X. Ren, A.A. Efros, and J. Malik. “Recovering Human Body
Configurations: Combining Segmentation and Recognition.” CVPR,
2004.

[MRY11] Hossein Mobahi, Shankar R. Rao, Allen Y. Yang, S. Shankar Sas-
try, and Yi Ma. “Segmentation of Natural Images by Texture and
Boundary Compression.” IJCV, 2011.

[MSK03] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An invitation to 3D
vision, from images to models. Springer Verlag, 2003.

[MVM11] S. Maji, N. K. Vishnoi, and J. Malik. “Biased normalized cuts.”
CVPR, 2011.

[NBW09] P. Ndjiki-Nya, D. Bull, and T. Wiegand. “Perception-oriented video
coding based on texture analysis and synthesis.” In ICIP, 2009.

[NDK12] Patrick Ndjiki-Nya, Dimitar Doshkov, Hagen Kaprykowsky, Fang
Zhang, Dave Bull, and Thomas Wiegand. “Perception-oriented video
coding based on image analysis and completion: A review.” Signal
Processing: Image Communication, 27(6):579–594, 2012.

[PH12] M. Pedersen and J.Y. Hardeberg. “Full-reference image quality metrics:
Classification and evaluation.” Found. Trends. Comp. Graphics and
Vision., 2012.

[PS00] Javier Portilla and Eero P Simoncelli. “A parametric texture model
based on joint statistics of complex wavelet coefficients.” International
Journal of Computer Vision, 40(1):49–70, 2000.

[PW10] O. Pele and M. Werman. “The Quadratic-Chi Histogram Distance
Family.” ECCV, 2010.

[Ric10] E. Richardson. The H.264 Advanced Video Compression Standard.
Wiley, 2010.

151

[Ris78] J. Rissanen. “Modeling By Shortest Data Description.” Automatica,
1978.

[RM03] X. Ren and J. Malik. “Learning a classification model for segmenta-
tion.” ICCV, 2003.

[RMY09] S. R. Rao, H. Mobahi, A. Y. Yang, S. S. Sastry, and Yi Ma. “Natural
Image Segmentation with Adaptive Texture and Boundary Encoding.”
ACCV, 2009.

[RS13] Zhile Ren and Gregory Shakhnarovich. “Image Segmentation by
Cascaded Region Agglomeration.” CVPR, 2013.

[SB06] H.R. Sheikh and A.C. Bovik. “Image information and visual quality.”
IEEE TIP, 2006.

[SBK10] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. “Dense
point trajectories by GPU-accelerated large displacement optical flow.”
ECCV, 2010.

[SCV02] B. Sandberg, T.F. Chan, and L. Vese. “A level-set and Gabor-based
active contour algorithm for segmenting textured images.” UCLA
CAM report, 2002.

[SFP94] S. Soatto, R. Frezza, and P. Perona. “Motion estimation via dynamic
vision.” ECCV, 1994.

[SH98] P. H. Suen and G. Healey. “Analyzing the bidirectional texture
function.” CVPR, 1998.

[SJK09] Yaser Sheikh, Omar Javed, and Takeo Kanade. “Background Subtrac-
tion for Freely Moving Cameras.” ICCV, 2009.

[SL03] D. Skocaj and A. Leonardis. “Weighted and Robust Incremental
Method for Subspace Learning.” ICCV, 2003.

[SM97] Jianbo Shi and Jitendra Malik. “Normalized Cuts and Image Segmen-
tation.” TPAMI, 1997.

[SM13] Laurent Sifre and Stéphane Mallat. “Rotation, Scaling and Deforma-
tion Invariant Scattering for Texture Discrimination.” CVPR, 2013.

[Soa09] S. Soatto. “Actionable Information in Vision.” ICCV, 2009.

[Soa10] S. Soatto. Steps Toward a Theory of Visual Information. ArXiv
http://arxiv.org/abs/1110.2053, 2010.

152

[SOH12] G.J. Sullivan, J. Ohm, Woo-Jin Han, and T. Wiegand. “Overview of
the High Efficiency Video Coding (HEVC) Standard.” Circuits and
Systems for Video Technology, IEEE Transactions on, 22(12):1649–
1668, Dec 2012.

[SPV09a] G. Sundaramoorthi, P. Petersen, V. S. Varadarajan, and S. Soatto.
“On the set of images modulo viewpoint and contrast changes.” CVPR,
2009.

[SPV09b] G. Sundaramoorthi, P. Petersen, V. S. Varadarajan, and S. Soatto.
“On the set of images modulo viewpoint and contrast changes.” CVPR,
2009.

[SSY10] G. Sundaramoorthi, S. Soatto, and A. Yezzi. “Curious snakes: A
minimum latency solution to the cluttered background problem in
active contours.” CVPR, 2010.

[ST99] N. Slonim and N. Tishby. “Agglomerative information bottleneck.”
NIPS, 1999.

[ST06] P. Sand and S. Teller. “Particle Video: Long-Range Motion Estimation
using Point Trajectories.” CVPR, 2006.

[TH94] P.C. Teo and D.J. Heeger. “Perceptual image distortion.” ICIP, 1994.

[TJP10] Michael Tao, Micah Johnson, and Sylvain Paris. “Error-tolerant Image
Compositing.” ECCV, 2010.

[TPB99] N. Tishby, F. Pereira, and W. Bialek. “The information bottleneck
method.” Proceedings of the 37-th Annual Allerton Conference on
Communication, Control and Computing, 1999.

[TS94] C. Tomasi and J. Shi. “Good Features to Track.” CVPR, 1994.

[TV07] R. Tron and R. Vidal. “A benchmark for the comparison of 3-D
motion segmentation algorithms.” CVPR, 2007.

[TYW00] A. Tsai, A. Yezzi, and A. Willsky. “A Curve Evolution Approach
to Medical Image Magnification via the Mumford-Shah Functional.”
MICCAI, 2000.

[VF08] A. Vedaldi and B. Fulkerson. “VLFeat: An Open and Portable Library
of Computer Vision Algorithms.” 2008.

[Vid03] R. Vidal. “Generalized Principal Component Analysis (GPCA).”
CVPR, 2003.

153

[VZ03] M. Varma and A. Zisserman. “Texture classification: Are filter banks
necessary?” CVPR, 2003.

[VZ05] M. Varma and A. Zisserman. “A Statistical Approach to Texture
Classification from Single Images.” IJCV, 2005.

[WA93] J. Wang and E. Adelson. “Layered representation for image sequence
coding.” In ICASSP, 1993.

[Wan95] B. A. Wandell. Foundations of Vision. Sinauer Associates, Inc., 1995.

[WB09] Zhou Wang and A.C. Bovik. “Mean squared error: Love it or leave it?
A new look at Signal Fidelity Measures.” Signal Processing Magazine,
IEEE, 26(1):98–117, Jan 2009.

[WBS04] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. “Image quality
assessment: From error visibility to structural similarity.” IEEE TIP,
2004.

[WGZ08] Y. N. Wu, C. Guo, and S. C. Zhu. “From information scaling of
natural images to regimes of statistical models.” Quarterly of Applied
Mathematics, 2008.

[WHZ08] L. Wei, J. Han, K. Zhou, H. Bao, B. Guo, and H. Shum. “Inverse
Texture Synthesis.” ACM Trans. Graph., 2008.

[WL00] L. Wei and M. Levoy. “Fast Texture Synthesis Using Tree-structured
Vector Quantization.” SIGGRAPH, 2000.

[WLP09] C. Wang, M. de La Gorce, and N. Paragios. “Segmentation, ordering
and multi-object tracking using graphical models.” In ICCV, 2009.

[WSI07] Y. Wexler, E. Shechtman, and M. Irani. “Space-time completion of
video.” PAMI, 2007.

[WT13] David Weiss and Ben Taskar. “SCALPEL: Segmentation Cascades
with Localized Priors and Efficient Learning.” CVPR, 2013.

[WWO08] Huamin Wang, Yonatan Wexler, Eyal Ofek, and Hugues Hoppe. “Fac-
toring repeated content within and among images.” In ACM TOG,
2008.

[XBY09] S. Xiaowei, Y. Baocai, and S. Yunhui. “A Low Cost Video Coding
Scheme Using Texture Synthesis.” In ISP, Oct 2009.

154

[XMX08] X. Xie, M. Mirmehdi, X. Xie, and J. Suri. “Handbook of Texture
Analysis.” ICP, 2008.

[YS01] Stella X. Yu and Jianbo Shi. “Grouping with Bias.” NIPS, 2001.

[ZLG10] Z. Zhang, X. Liang, A. Ganesh, and Y. Ma. “TILT: Transform
Invariant Low-Rank Textures.” In ECCV, 2010.

[ZLY95] S. Zhu, T. Lee, and A. Yuille. “Region competition: Unifying snakes,
region growing, energy/Bayes/MDL for multi-band image segmenta-
tion.” ICCV, 1995.

[Zuc76] Steven W Zucker. “Toward a model of texture.” CGIP, 1976.

[ZWM98] S. C. Zhu, Y. N. Wu, and D. Mumford. “Filters, Random Fields and
Maximum Entropy (FRAME): towards the unified theory for texture
modeling.” IJCV, 1998.

[ZXZ11] H. Zhi, Z. Xu, and S.-C. Zhu. “Video Primal Sketch: A Generic
Middle-Level Representation of Video.” ICCV, 2011.

155

