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Abstract

A video coding system is presented that partitions the
scene into “visual structures” and a residual “background”
layer. A low-level representation (“track-template”) of vi-
sual structures is proposed that exploits their temporal re-
dundancy. A dictionary of track-templates is constructed
that is used to encode video frames. We make optimal
use of the dictionary in terms of rate-distortion by choos-
ing a subset of the dictionary’s elements for encoding us-
ing a Markov Random Field (MRF) formulation that places
the track-templates in “depth” layers. The selected “track-
templates” form the mid-level representation of the “visual
structure” regions of the video. Our video coding system
offers improvements over H.265/H.264 and other methods
in a rate-distortion comparison.

1. Introduction

With an ever-increasing video consumption rate on the
Internet, we are faced with a continuously increasing pres-
sure on available bandwidth1. While the new H.265 [8] has
improved performance over existing standards, the major-
ity of video compression techniques have traditionally been
confined in modeling and predicting pixel values of video
frames. We consider an alternative to traditional coding
schemes, where we assume that a video has been generated
by an underlying scene. Our aim is to model and compress
the source (scene) rather than the output (pixel values).

Motivated by video compression, we partition the scene
into two types of regions, “visual structures” and a back-
ground layer. “Visual structures” are regions of images
that trigger isolated responses of a co-variant (feature) de-
tector. These include blobs, corners, edges, junctions and
other sparse features generally assumed to correspond to

1Cisco projects that by 2019 there will be 5 million years of video con-
tent traveling the Internet every month and that by 2019, video traffic will
be 77% of all Internet traffic [4].

properties of the scene. Structure regions that can be put
into correspondence across frames are called “trackable re-
gions”. Trackable regions can persist over a large number of
frames. We leverage on their temporal redundancy to com-
press them, by storing their compact representations once
in the first frame they appear and predicting them in all sub-
sequent ones. This allows compressing any structures that
persist in more than one frame. The background layer gen-
erally exhibits spatial regularity and can be compressed by
standard coding techniques. The visual structures’ repre-
sentations along with the background layer are overlaid to-
gether on video frames, which are then further compressed
by a standard video encoder.

It has been previously argued that an image can be par-
titioned into structures and textures ([7, 12, 2]) based on
statistics computed in that one image. We test whether im-
age structures arise from properties of the scene, by leverag-
ing on the notion of proper sampling [13]. Proper sampling
requires multiple images of the same scene to determine
whether a structure is “real” in the sense of corresponding to
something in the scene or an “alias”, an artifact of nuisance
factors in the image formation process. We model and com-
press those that satisfy this test and allow a standard video
encoder to compress the rest. Finally, partitioning the scene
into various types of regions for video coding has also been
previously proposed [5, 11, 6, 15]. However these methods
do not model “visual structures” to take advantage of their
temporal redundancy.

In this work, we introduce the notions of “visual struc-
tures” and “trackable regions”. We compute a dictionary of
track-templates (a low-level representation of visual struc-
tures) and then choose a subset of its elements to encode
a video sequence using a Markov Random Field (MRF)
formulation that places the track-templates in layers (mid-
level representation). This allows an optimal use of the dic-
tionary by minimizing the reconstruction error of the pre-
dicted frames. We show how this system improves the
H.265/H.264 performance in a rate-distortion sense.



2. Visual Structures
Digital images {Ixy}(x,y)∈∆=(1,1):(X,Y ) ∈ RX×Y are

obtained by averaging a function I : D ⊂ R2 → R; p 7→
I(p) on a neighborhood B of the point pxy ∈ D of size
σ > 0. In general, Ixy = I(pxy)+nxy where nxy = nxy(I)
is the quantization error. We consider groups of transforma-
tions of the sensor plane, g : D ⊂ R2 → R2; p 7→ g(p),
and denote their induced action on the image by I ◦ g .

=
I(g(p)). For example, the translation group is represented
by a translation vector T ∈ R2, via g(p)

.
= p + T , so that

I ◦ g(p)
.
= I(p + T ). Each group element g ∈ G de-

termines a “frame”. For instance, in the Euclidean plane,
the translation group determines a reference frame with ori-
gin at the point T ∈ R2. The discussion below applies to
other finite-dimensional Lie groups of the plane such as Eu-
clidean, similarity, affine, and projective.

Canonization is a constructive process to eliminate the
effects of a group G acting on the data (the set of images
I). The group organizes the data into orbits. A covariant
detector identifies canonical elements of each orbit that co-
vary with the group. Hence, in the corresponding (moving)
frame, the data is independent of the group. Formally, a
differentiable functional ψ : I ×G → R; (I, g) 7→ ψ(I, g)
is said to be local, with effective support σ if its value at g
only depends on a neighborhood of the image of size σ > 0,
up to a residual that is smaller than the mean quantization
error. For instance, for a translational frame g, if we call
I|ωσ(g)

an image that is identical to I in a neighborhood ω of
size σ centered at position g ≡ T , and zero otherwise, then
ψ(I|ωσ(g)

, g) = ψ(I, g) + ñ, with |ñ| ≤ 1
XY

∑
x,y |nxy|.

For other groups, we consider the image in the reference
frame determined by g, or the “transformed image” I ◦g−1.

If we call∇ψ .
= ∂ψ

∂g the gradient of the functional ψ with
respect to (any) parametrization of the group, then under the
“transversality” conditions det(∇∇ψ) 6= 0, the equation
∇ψ = 0 locally determines a unique function g (a canoni-
cal representative) of I , g = ĝ(I), via the Implicit Function
Theorem. If the canonical representative co-varies with the
group, in the sense that ĝ(I ◦g) = (ĝ ◦g)(I), then the func-
tional ψ is called a co-variant detector (e.g. Laplacian-of-
Gaussian (LoG) and the difference-of-Gaussians (DoG)).
Varying σ produces a scale-space, whereby the locus of
extrema of ψ describes a graph in R3, via (p, σ) 7→ p̂ =
ĝ(I;σ). Starting from the smallest σ, one would have a
large number of extrema; as σ increases, extrema will merge
or disappear. Although in a two-dimensional scale space,
extrema can also appear as well as split, they are increas-
ingly rare as scale increases, so the locus of extrema as a
function of scale is well approximated by a tree, called the
co-variant detection tree [10]. A region ω ⊂ D is canon-
izable at scale σ if there exists a co-variant detector ψ that
has one and only one isolated extremum in ω at that scale.
We call this region a “visual structure”. The region may be

canonizable at multiple scales.
Canonization yields a number of regions each containing

exactly one “structure”. An image is properly sampled if
any co-variant detector functional operating on the sampled
image {Ixy} ∈ RX×Y yields the “same answer” (topology)
that it would if ran on the “original” (continuous) image
I : D → R.

Assuming co-visibility, Lambertian reflection and con-
stant illumination, topological equivalence of co-variant de-
tector responses between the scene and the image can be re-
placed by that between different images of the same scene.
Thus, two temporally adjacent images are properly sampled
at scale σ0 in a region ω if, for all scales σ ≥ σ0, there ex-
ists a one-to-one correspondence between covariant detec-
tion trees in ω [13].

Proper sampling yields as a byproduct a partition of the
image(s) into two regions: those for which unique corre-
spondence across frames can be established and the rest.
We call the former ones trackable regions. Trackable re-
gions are both canonizable and properly sampled. Track-
able regions are characterized by the “signature” of each re-
gion at the coarsest scale at which it is tracked, for instance
the actual pixel values in a neighborhood of the origin of
the tracked frame, as well as the frame itself, for example
position, orientation and scale for the case of a similarity
reference frame.

In practice, to determine the trackable regions, we use a
feature point tracker such as [10]. Which regions are classi-
fied as trackable regions, depends on the detection threshold
of each method. The effects of the threshold are visible in
Fig. 1, where the number of tracks decreases by increasing
the threshold. The ones that persist are usually the longest
and most stable, a fact which we exploit for video compres-
sion.

Co-variant detector functionals can be chosen to canon-
ize a variety of groups, from the simplest (translation) to the
most complex (homeomorphisms). The larger the group,
the more costly it is to encode, the larger the region that
can be encoded. The optimal choice of group depends on
the statistics of the images being compressed. For the pur-
pose of illustration, in what follows we focus on the simi-
larity group of translations, rotations and isotropic scaling.
In many cases one can assume that (planar) rotation is neg-
ligible and focus on the location-scale group. Tracking then
provides a (moving) reference frame, relative to which one
can encode a portion of the region of the image. If the im-
age is undergoing a similarity transformation, typically no
change will be observed in the moving frame, which how-
ever is sometimes violated.

2.1. Low-Level Structure Representation

A trackable region, with index k, that appears in
frames t1 to t2, can be represented losslessly by F̂k =



Figure 1. Varying the co-variant detection threshold produces different densities of trackable regions. There are typically three regions of
interest, shown in the images. The tracks that persist through a wide a range of thresholds are typically the longest and most accurate.

Figure 2. Examples of track-templates, H(avg)
k (left) and H

(fst)
k (right). Each row shows track-templates at different scales (29×29, 15×15

and 7×7). H(avg)
k is smoother since the representation involves averaging, whereas H(fst)

k preserves image discontinuities better.

{Fk(t1), . . . , Fk(t2)}, where Fk(t)
.
= {Ixy(t),∀(x, y) ∈

ωkσ(t)}. Fk(t) corresponds to the intensity value at pixel lo-
cations (x, y) in a neighborhood ωk at scale (area) σ at time
t. The feature point tracker [10] provides a set of regions
F = {F̂1, . . . , F̂K}, where K is the number of trackable
regions. We model the trackable regions (and structures) in
a video, using a time-invariant dictionary element for each
region that is of the same size as the region itself. We con-
sider two alternative time-invariant representations, which
we call the “track-template”:

(a) H
(avg)
k (F̂k)

.
=

1

T

t2∑
t=t1

Fk(t) , (1)

(b) H
(fst)
k (F̂k)

.
= Fk(1) , (2)

where T = t2 − t1 + 1. H
(fst)
k is simply the intensity

values of the track in the first frame it appears. In the mean-
squared-error sense, the best one in minimizing the recon-
struction error is H(avg)

k . In Sec. 3.1, we show that by in-
corporating our method in H.265 we outperform H.265 in a
rate-distortion comparison. For practical reasons (explained
in Sec. 3.1), we are constrained to use H(fst)

k .
One track-template is stored for each trackable region.

The collection of all the track-templates, {H1, . . . ,HK},
from a video forms a dictionary, where the scale of each
dictionary element is naturally selected to be the coarsest
scale at which the track was detected. In Fig. 2, we show

elements of the dictionary for a particular video. The track-
templates introduce a compression gain at the expense of
fidelity. For comparison, if we were to use F̂k to represent
the trackable regions, the distortion would have been 0, but
the cost of encoding a track would have been β×(σ+4)×T ,
where β is a constant representing the cost of storing a dou-
ble (i.e. β = 8 bytes), σ is the scale of the track in space and
4 is the number of parameters of the track (xk, yk, tk, k).
The track-template instead only requires β × (σ + 4T ).
Hence the compression ratio is ξ = (σ+4)T

σ+4T . Note that a
compression gain is achieved (i.e. ξ ≥ 1) for σ ≥ 0 and
for T ≥ 1. We measure the distortion introduced by com-
puting the dissimilarity of the representation Hk(F̂k) from
each instance of the track Fk(t):

q(Hk(F̂k), F̂k) =
1

T
1

σ

t2∑
t=t1

‖Hk(F̂k)− Fk(t)‖2 , (3)

where ‖.‖ denotes the Euclidean norm. This expression
computes the average squared distance per pixel from the
representation to the instances of the track. If we are aim-
ing for a specific fidelity, this function can be used to test
whether the representation achieves it. In case it does not,
we use a simple mechanism that would allow us to achieve
that accuracy: We take each track and recursively break it
in the middle, treating each half as an independent track.
We stop the recursion when the desired fidelity is achieved



for every track. The downside is that each split adds an ad-
ditional element to the dictionary, which reduces the com-
pression achieved.

3. Mid-Level Structure Representation
The dictionary of track-templates, i.e.

{Hk(F̂k)}k=1,...,K , and the track parameters, i.e.
{(xk, yk, tk, k)}k=1,...,K}, need to be transmitted/stored in
order to reconstruct the frames. As is, when the tracks are
projected back to the image domain, there will be certain
subsets of the domain where tracks would be overlapping.
Since the track-templates, Hk(F̂k), are an approxima-
tion of the instantaneous intensity values in each frame,
{Fk(t1), . . . , Fk(t2)}, it typically occurs that the intensity
value on each pixel in each frame is best reconstructed
by one track-template among all that occupy it. To utilize
the dictionary as well as possible, we need to choose for
each pixel location, the track-template that minimizes the
reconstruction error. In terms of coding cost though, this
approach is inefficient, since we would need to transmit the
index of the track-template for each pixel location.

To reduce the coding cost, we could instead consider
each region where two or more tracks intersect and choose
the track-template that minimizes the error on each intersec-
tion. In this way, we would be assigning one “minimizer”
for each intersection, rather than for each pixel. We would
then transmit the index of the minimizer and the boundaries
of the intersection. However, the number of intersections
per frame is large, so the number of parameters would still
be prohibitively too many.

Instead, we follow an alternative approach. We choose
to assign an ordering of the track-templates by placing them
on depth layers. A track-template placed on a layer with a
smaller “depth” would be overlaid on top of another one
placed on a layer with a larger “depth”. Hence, by selecting
an ordering of track-templates, we implicitly choose which
of them to use to reconstruct the video frames. By following
this scheme, we would simply append a scalar to the track
parameters, hence characterizing the track-templates with
the parameter set (xk, yk, tk, k, dk), where dk corresponds
to the “depth” or ordering of that particular track-template
(in each frame). The proposed solution performs a global
optimization over all track-templates, which we propose to
solve in one step. Note that a global optimization scheme is
necessary since the depth ordering of a track-template can
influence any other. An example of the proposed solution is
shown in Fig. 3.

To determine the ordering of track-templates our solu-
tion draws inspiration from [14], where their model was
used for segmentation, ordering and multi-object tracking.
Specifically, let VT = {1, 2, . . . ,K} be the index set of
track-templates. Let VI = {K + 1, . . . ,K + N} be the
index set of intersections. Each intersection is defined to be

a unique combination of track-templates overlapping. Let
Hk be the appearance of a track-template for k ∈ VT (i.e.
either H(fst)

k or H(avg)
k ). Let Mk be the index set of in-

tersections which are occupied by track-template k ∈ VT .
Let dk for k ∈ VT be the relative depth index (ordering) of
the track-template. Assume that there are at most L layers,
where L ≤ K and that L = {0, 1, . . . L − 1}. Let li ∈ VT
denote the index of the track-template assigned to intersec-
tion i ∈ VI (i.e. it is the “minimizer”). Fig. 4 illustrates
these quantities. In addition, we introduce constraints A1

and A2. A1 couples the track-template with the smallest
depth with intersection i, by assigning its index to li. A2

requires that the depth of one track-template is smaller than
all others (“unique minimizer”):

A1 : li = arg min
{k|i∈Mk,k∈VT }

dk,∀i ∈ VI , (4)

A2 : ∀i ∈ VI ,∃k̃ ∈ {k|i ∈Mk, k ∈ VT } (5)

s.t. ∀k′ ∈ {k|i ∈Mk, k ∈ VT }\{k̃}, dk̃ < dk′ (6)

These constraints couple several templates together making
the optimization complex. The same problem can be solved
by considering pairwise relationships of templates and in-
tersections only, but an additional layer of modeling needs
to be introduced. Towards that end, we let zi = dli be the
depth of each intersection i. We then have the following
constraint:

A3 : zi = min
{k|i∈Mk,k∈VT }

dk,∀i ∈ VI . (7)

A3 requires that the depth of an intersection is the same as
the depth of the “minimizer” of that intersection. It was
shown by [14] that the following equivalence holds: ∀i ∈
VI , A1 ∧ A2 ∧ A3 ⇔ ∧k∈VT (C1k ∧ C2k ∧ C3k) (for proof
refer to [14]), where:

C1k : ¬((li = k) ∧ (zi 6= dk)) , (8)
C2k : ¬((li = k) ∧ (i /∈Mk)) , (9)
C3k : ¬((li 6= k) ∧ (zi ≥ dk) ∧ (i ∈Mk)) . (10)

The constraints are only pairwise relationships between
template k and intersection i, which can be solved by a pair-
wise MRF. Specifically, the index set of nodes in the MRF
is denoted by V = VT ∪VI . At each node we have a random
variable Γi ∀i ∈ V . Γi takes a value γi from its label set
Gi. The whole MRF comprises of a discrete random vector
Γ = (Γi)i∈V , which takes a value γ in G = G1× . . .×G|V |.
The edges of the MRF connect the templates with the inter-
sections denoted by E = {(k, i)|k ∈ VT , i ∈ VI}. Hence,
we have the following energy with configuration γ:

E(γ) =
∑
i∈V

φi(γi) +
∑

(k,i)∈E
ψk,i(γk, γi) . (11)
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Fig. 4. Encoding structures in a frame. Problem illustration. For this instance of the problem the dictionary is composed of 9 track-
templates: 4 white squares, 4 light gray squares and 1 dark gray square (in this illustrative example, the track-templates could be
assumed as given to us, i.e. we have not used a tracker to retrieve them). In the original frame (left), there are 4 patches that are
non-overlapping. In addition, there is a light gray patch almost covering a white patch (therefore, 2 patches overlapping) and there
is also a white patch almost completely occluded by a light gray patch which is in turn occluded by a dark gray patch (therefore, 3
patches overlapping). Our proposed solution should retrieve the 3 middle frames. On the top layer, we retrieve the gray and white
patches on the left and right respectively and the occluder patches in the middle. In the next layer, the white occluded patch is
retrieved along with the middle patch of the other overlapping stack. Finally, in the last layer, the white patch is retrieved. Using
the dictionary, the positions and depths of the patches, we can then reconstruct the original frame. The reconstructed frame is
shown on the right.
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Fig. 5. Left to right: (1) Model illustration. Top nodes represent the 3 track-templates. Bottom nodes show all possible intersections
for 3 track-templates. Edges are drawn between every template and intersections occupied by them. (2) Index sets VT and VI . (3)
Index set Mk.

k 2 VT . Each intersection is a unique combination of template intersections. Let Mk be the index set of intersections
which are covered (or occupied) by template k 2 VT . Let dk for k 2 VT be the relative depth index of the template.
Assume that there are at most L layers, where L  K and that L = {0, 1, . . . L� 1}. Let li 2 VT denote the index of
the template assigned to intersection i 2 VI (i.e. it is the “minimizer”). Fig. 5 illustrates visually these quantities.

We also have the following constraints:

A1 : li = arg min
{k|i2Mk,k2VT }

dk, 8i 2 VI (3)

A2 : 8i 2 VI , 9k̃ 2 {k|i 2 Mk, k 2 VT } s.t.8k0 2 {k|i 2 Mk, k 2 VT }\{k̃}, dk̃ < dk0 (4)

A1 couples the depth of the track-template that has the smallest depth with the intersection i, by assigning its index
to li. A2 requires that for all intersections, there exists one track-template, whose depth is smaller than all others.
This is needed so that there is a unique “minimizer” for each intersection. Furthermore, the above constraints
couple several templates together, making the optimization complicated. The same problem can be solved by
considering only pairwise relationships of templates with intersections but an additional layer of modeling needs
to be introduced. Towards that end, we let zi = dli be the depth of each intersection i. We then have the following
constraint:

A3 : zi = min
{k|i2Mk,k2VT }

dk, 8i 2 VI (5)

A3 requires that the depth of an intersection is the same as the depth of the “minimizer” of that intersection.
We can then show that instead of satisfying A1 ^ A2 ^ A3 8i 2 Vi, we can equivalently satisfy the following:
8i 2 VI , A1 ^ A2 ^ A3 , ^k2VT

(C1k ^ C2k ^ C3k), where:

C1k : ¬((li = k) ^ (zi 6= dk)) (6)

C2k : ¬((li = k) ^ (i /2 Mk)) (7)

C3k : ¬((li 6= k) ^ (zi � dk) ^ (i 2 Mk)) (8)

C1k says that it cannot be the case that the minimizer of intersection i is template k, but the depth of the intersection
i is not the same as the depth of the minimizer k. C2k says that the it cannot be the case that the minimizer of

Input Frame 1st Layer 2nd Layer 3rd Layer Reconstructed Frame

Figure 3. Encoding structures in a frame. Problem illustration. For this instance of the problem the dictionary is composed of 9 track-
templates: 4 white, 4 light gray and 1 dark gray square. The original frame is decomposed into 3 layers. Occluded track-templates are
pushed to the back layers. Our proposed solution retrieves the 3 middle frames, which along with the track-template parameters are used
to reconstruct the input frame (right).
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Figure 4. Left to right: (1) Model illustration. Top nodes represents 3 track-templates. Bottom nodes show the intersections of the 3
track-templates. Edges are drawn between every template and intersections occupied by them. (2) Index sets VT and VI . (3) Mk.

The nodes have the following potentials:

∀i ∈ VI , γi = (li, zi), φi(γi) = ||Ii −Hli || , (12)
∀i ∈ VT , γi = di, φi(γi) = α|di| , (13)

where the first expression measures the reconstruction er-
ror for a particular intersection and the second one gives a
higher preference to smaller depth values. The pairwise po-
tentials are given by:

ψk,i(γk, γi) = ψ1
k,i(γk, γi) + ψ2

k,i(γk, γi) + ψ3
k,i(γk, γi) ,

(14)

ψ1
k,i(γk, γi) = λ11I((li = k) ∧ (zi 6= dk)) , (15)

ψ2
k,i(γk, γi) = λ21I((li = k) ∧ (i /∈Mk)) , (16)

ψ3
k,i(γk, γi) = λ31I((li 6= k) ∧ (zi ≥ dk) ∧ (i ∈Mk)) .

(17)

We solve γopt = arg minγ E(γ) using any standard in-
ference method e.g. TRW-S [9]. The optimization is per-
formed for each frame independently. We fix α = 1,
λ1 = 50, λ2 = 1 and λ3 = 10. In addition note that
the number of layers, L, used to represent the “visual struc-
tures” of the video is a parameter that is automatically in-
ferred during optimization and does not require prior knowl-
edge. Finally, unlike [14] where VT corresponds to objects
and VI corresponds to pixels, in our work these quanti-
ties correspond to track-templates and intersections respec-
tively. Intersections were introduced in our problem to
tackle the problem of video compression. Note that without
this change in the model, [14] would have performed poorly
in the context of video compression in terms of coding cost
since a minimizer would have been assigned for each pixel.

3.1. Integration With Standard Video Encoders

Once we retrieve the ordering of the track-templates
using the previous step we can reconstruct the frames
by transmitting the parameter set for each track-template:
(xk, yk, tk, k, dk). The compression ratio of the representa-
tion to the uncompressed lossless one is ξ = (σ+4)T

σ+5T . For
integer-valued σ and T , ξ ≥ 1 for (σ > 1, T > 1). We
are therefore able to compress any track of length T ≥ 2
(i.e. the “trackable regions”). Using the depth dk, we can
reconstruct each frame by overlaying the structured regions
with a smaller depth on top of others. In Fig. 5, we show
how a frame from a video is decomposed into layers and
then reconstructed to recover all trackable regions.

To store the track-templates we use the following pro-
cedure: At encoding, each track-template is stored once in
the first video frame it appears and in the remaining frames
we store a constant intensity value e.g. 0 or the mean of
the local neighborhood. In addition, we also store the track-
templates’ parameters i.e. {(xk, yk, tk, k, dk)}k=1,...,K . At
decoding, we are able to recover each track-template by
simply selecting the appropriate image region that corre-
sponds to that track from the frame that it was stored during
encoding. We then propagate the track-template to other
frames using its stored parameters. Note that with this ap-
proach, it is impossible to recover H(avg)

k . This is due to
the fact that a track-template that is not on the top layer
(i.e dk = 0) cannot be recovered, since another track at
a “higher” layer has been overlaid on top of it. When us-
ing H(fst) though, track-templates are always put on the
top layer in the first frame they appear. This allows us to
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Figure 5. Reconstructing a frame. Visual structures are decomposed into depth layers and reconciled by overlaying them. The input frame
is reconstructed by adding back to the visual structures the background layer.

recover the exact track-templates at the decoder and hence
reconstruct the structured regions.

Regions of the image not occupied by track-templates
are encoded as a background layer. Each frame sent to a
standard video encoder (e.g. H.265) is composed by the
track-templates that first appear in that frame and the back-
ground layer (Fig. 5).

4. Experiments
We investigated how well the structure representation

reconstructs the individual instances of the track, without
applying the recursive, splitting method described in Sec.
2.1. Towards this end, we used the 10 car and 2 people se-
quences from the MOSEG dataset [3]. The sequences range
from 19-60 frames, but for this experiment, we only used
the first 19 frames for all videos to achieve uniformity in
the results. We computed the structure representations and
reconstructed the trackable regions of the videos using our
proposed solution. For each track-template, we computed
its average reconstruction error per pixel for each instance
of the track according to Eq. 3 for both H(avg)

k and H(fst)
k .

We used 5 different scales for tracking with the smallest one
being 7 × 7 and the largest being 35 × 35. In addition, we
have varied the detection threshold of tracks and selected 3
representative levels. Typical distributions of tracks on the
image domain, for the three thresholds, are shown in Fig. 1.

In Fig. 6, we show how q(Hk(F̂k), F̂k) varies for both
representations as a function of the length of the track and
the scale of the track. We also show histograms of the distri-
bution of tracks according to scale and length. For H(avg)

k ,
the reconstruction error per pixel increases with increas-
ing lengths and scales, but the increase is small and hence
shows that the average can reliably represent tracks, even if
they are long. For H(fst)

k , the error increases only slightly
faster.

We used our proposed system to encode the first 5
frames of the 12 video sequences from MOSEG. We used
H.265/H.264 to encode the frames with the structure repre-

sentations and background layers placed on them. We have
also encoded the videos using HEVC/H.265 (HM 16.2)2,
H.264 (JM 18.6 Reference Software [1]) and JPEG. Note
that our method can be used along any other video encod-
ing system, replacing H.265/H.264. In Fig. 7 we plot PSNR
(dB) against bit rate (kbps) for our approach (“VS+H.265”,
“VS+H.264”), H.265, H.264 and JPEG. For better cover-
age of the image domain, we expanded the domain of each
track-template by a factor of 32. To achieve varying fidelity
for all methods, we varied the quantization levels.

We consistently outperform all other methods in all se-
quences. In these experiments, the representations achieve
at least 25 dB in PSNR for each of the instances of the track
they are representing (using our recursive, splitting algo-
rithm), before they are passed to H.265/H.264. At lower fi-
delity, the performance gain of our method diminishes due
to the parameter overhead that needs to be transmitted. At
higher fidelity our approach benefits from taking advantage
of the temporal redundancy of the tracks and it is much
more efficient than competitive approaches.

Fig. 8 illustrates where the gain is achieved in our meth-
ods. For the last frame of the video sequences, we show
which regions were predicted from previous frames (non-
transparent regions) and which first appeared in this frame
(semi-transparent). Generally, the larger the percentage of
tracks that are temporally predicted, the larger the improve-
ment is over other methods. While H.265/H.264 encodes
the temporally predicted tracks, our encoder predicts them
from previous frames. Our algorithm takes on average 96
seconds on the encoder side and 0.5 seconds on the decoder
side per frame (excluding the computational time required
by H.265/H.264), for a MATLAB/C++ implementation on
an Intel 2.4 GHz dual core processor machine.

Future challenges. Tracks on fast moving objects such as
cars are split in some sequences, hence reducing the tempo-
ral exploitation that could have been achieved. To overcome
this, a richer representation is required, possibly one that is

2https://hevc.hhi.fraunhofer.de/
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Figure 6. Results for tracks in MOSEG [3]. Top: q(H(avg)
k (F̂k), F̂k) and q(H

(fst)
k (F̂k), F̂k) as a function of length and a histogram of

track lengths. Bottom: q(H(avg)
k (F̂k), F̂k) and q(H

(fst)
k (F̂k), F̂k) as a function of scale and the distribution of track scales.

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

0 50 100 150 200

25

30

35

40

45

Bit Rate (kbps)

PS
N

R
 (d

B
)

 

 
VS+h.265
h.265
VS+h.264
h.264
JPEG

Figure 7. PSNR against bit rate. “VS+H.265”(black) and “VS+H.264”(blue) outperform respectively H.265(yellow) and H.264(red).
Figures correspond to the sequences in Fig. 8.

time-varying, but still more compact than simply encoding each of the instances of the track in each frame. The mid-



Figure 8. Propagated and newly-created tracks. Non-transparent tracks correspond to tracks that are motion-predicted from previous
frames. Semi-transparent tracks are tracks that start in this frame. All results shown are correspond to the fifth frame of each video.

level representation of tracks is independent of such choice,
hence the overall approach allows flexibility in what low-
level representation we could use.
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5. Conclusion
We presented an alternative system to traditional video

encoders, which was shown to exploit the temporal redun-
dancy of visual structures. The frames were partitioned
into structures and background layers. Structures are com-
pressed using a time-invariant representation (low-level rep-
resentation). They are then ordered in terms of recon-
struction error and are used to reconstruct the video along
with the background layers (mid-level representation). Our
method can be wrapped around standard encoders such as
H.265 and H.264 and it outperforms both of them in a rate-
distortion criterion. Finally, the mid-level representation
proposed could potentially have other uses beyond com-
pression such as action recognition and other high level ap-
plications.
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