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Abstract
We describe a video compression methodology that exploits the structure of the data formation

process, whereby the “source” is the scene, and the “channel” includes scaling and occlusion
phenomena that are critical elements of image formation. Thus our scheme involves occlusion
detection, optical flow computation, texture/structure partition, and a notion of proper sampling. We
show preliminary but promising results that exceed baseline compression performance, albeit at an
increased computational cost.

1 Introduction
Video exhibits considerable redundancy in both space and time, and generic priors such as sparsity
and regularity have been exploited with some success, but diminishing return. Pressure from the
applications1 calls for new approaches to break the “video compression wall.” To do so, encoders
ought to explicitly model and exploit the phenomenology of the data-formation process, rather than
treating video as a generic bit-stream. In other words, rather than encoding the video, one should
encode some representation of the scene that generated it. The representation (encoding) depends on
the task: The best encoding for human fruition (e.g., compression of movies) is different from the
best for surveillance, robotic navigation, or content-based video retrieval [18]. In this paper we focus
on human fruition, like classical video compression, where performance is ideally computed with
some perceptual score [21], but often in practice with the (perceptually irrelevant) RMS or PSNR
scores.

Two phenomena of the optical data-formation process are critical to compression: occlusion and
scaling. Occlusion implies that there are portions of the scene, or the light source, that are visible
in one image but not another, and therefore must be encoded anew. Scaling implies that there is no
“Nyquist frequency” in the scene, as moving closer to objects causes more and more structure to
appear. This causes phase transitions (singular perturbations) in the representation, and forces the
continuous limit to be part of the analysis.

Occlusion phenomena (occluding boundaries), together with material transitions (material bound-
aries) and illumination boundaries (cast shadows), are indirectly accounted for in existing video
compression schemes: They all yield highly kurtotic gradient distributions that are captured by
sparsity-inducing priors. However, of the three, only occlusion phenomena yield an “information
increment” (innovation), where future data cannot be explained with past data in the presence of
motion. Therefore, it is important to be able to detect occlusions, which we do in Sect. 2.1. This also
relates to optical flow which addresses temporal redundancy. Scaling and quantization challenge the
traditional sampling paradigm, and calls for a new notion of “proper sampling”, that we introduce in
Sect. 2.2. This relates also to the notion of “texture” and addresses spatial redundancy.

In Sect. 3 we report some experimental results. Although our focus is on outlining a modeling
framework, we show that even a non-optimized implementation of our pipeline beats baseline
performance using the PSNR score. In Sect. 4 we point at limitations and challenges in our approach.

1CISCO projects that, by 2014, 90% of Internet traffic, and 64% of wireless traffic will be video. In 2010,
video surpassed peer-to-peer traffic on the Internet [5].
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1.1 Related work
At the level of generality adopted thus far, this work relates to the entirety of computer vision.
However, our goal is not to infer geometric, photometric, or dynamic properties of the scene from
video. Instead, we aim to infer just enough of the phenomenology of the scene to be useful for
compression, specifically occlusion and scaling. Even so, relevant prior work goes beyond what
we can cover in conference submission. We refer the reader to representative work on optical flow
[10, 4, 15], occlusion detection [2, 3], tracking e.g. KLT and particle filter [19, 22, 17], segmentation
e.g. gPb, mean shift [1, 6, 8], texture analysis and modeling [7, 14, 12], including texture/structure
partitioning [9, 24]. Finally, all video compression standards that offer end-to-end solutions are
related to our work e.g. H.262, H.263, H.264 [11].

1.2 Formalization
A (grayscale) video I : D ⊂ Z2 × N→ N; (x, t) 7→ I(x, t) is a spatially and temporally quantized
version of a hidden signal that we call radiance ρ. If we consider, for the sake of example, a planar
scene parallel to the image, then a motion orthogonal to it induces a re-scaling of the image domain:
I(x, t) =

∫
δε(x− x̃)ρ(s(t)x̃)s(t)dx̃, where δε is the quantization kernel (for instance an indicator

function supported on the pixel). This shows that we cannot just discretize the radiance by defining ρ
on a discrete domain, because by moving sufficiently far from the scene we can make s(t) sufficiently
small, and therefore the sampling of s(t)x̃ sufficiently high-rate. Instead, we must consider it as
a (continuous) function from surfaces embedded in three-dimensional space to the positive reals.
If the scene is not a fronto-parallel plane, but has arbitrary shape, it induces a deformation of the
image domain that is an epipolar transformation [16], which can be shown to admit as closure
the entire group of planar diffeomorphisms [20], so I(x, t) =

∫
δε(x − x̃)ρ(w(x̃, t))|Jw(x, t)|dx̃.

Therefore, we model the radiance as a function ρ : R2 → R+, and scene or viewer’s motion as a
domain diffeomorphism w : R2 → R2. If we think of the radiance as the “representation” that we
wish to infer, encode, store, and reconstruct, in addition to unknown domain deformations w, we
have unknown transformations of the range of the data. The simplest are contrast transformations
κ : N × N → R+; (I, t) 7→ κ(I, t)

.
= κ(t) ◦ I , that are continuous monotonic transformations of

the range space of the image. For simplicity, we will include the quantization kernel in the contrast
transformation, and therefore consider models of the form:

I(x, t) = κ(t) ◦ ρ ◦ w(x, t) + n(x, t) (1)
where n is the residual that lumps all unmodeled phenomena (mutual-illumination, inter-reflection,
transparency, translucency, vignetting, etc.) as well as sensor noise and other more standard phenom-
ena. The model (1) describes the temporal evolution of the data in the co-visible portions of the scene.
These are portions of the scene that are visible in more than one image at a time. In the complement,
i.e. the (multiply-connected) occluded region Ω(t) ⊂ D, the image at a given time t can in principle
take any value compatible with the marginal statistics of natural images. So, the residual n(x, t) can
be assumed to be small, spatially and temporally white and homoscedastic in the co-visible region
D\Ω(t), but it could be arbitrarily large in the occluded region Ω(t) ⊂ D. However, such regions
are typically sparse, in the sense that the occluded area |Ω(t)| is small relative to D.

Given a collection of images, {I(x, t)}x∈D,t∈[0, T ], our goal is to infer a model Σ = {κ̂, ρ̂, ŵ},
that is as “simple” as possible, and that yields as “small” a residual

∑
t,x |n(x, t)|. This can be

framed as an optimization problem, where we must declare what we mean by “simple”, what we
mean by “small”, and define the class of models Σ. Unlike other tasks, such as decision and control,
in reconstruction we do not care about model identifiability, so long as we can find any model
that describes the data sufficiently well. In Sect. 2 we describe these ingredients and the ensuing
algorithmic instantiations.
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2 Encoder
2.1 Occlusions, optical flow, and temporal redundancy
Occlusion detection is a binary classification problem where each pixel is labeled as either co-visible
(x ∈ D\Ω(t)) or occluded (x ∈ Ω(t)). Note that this does not depend on how many “objects” there
are in the scene, or occlusion layers: A point on the scene is either visible or not. In order to test
for occlusion, we must invalidate the co-visibility hypothesis, that entails searching for the domain
diffeomorphisms that maps one image onto another. If we restrict our attention to two temporally
adjacent images, this problem is known as optical flow: ρ(x) = I(x, t− 1) and the residual n(x, t)
in (1) is the sum of two components: e2(x, t) that is dense, (defined for all x ∈ D) but statistically
“simple” (spatially and temporally uncorrelated, isotropic, homoscedastic etc.) with a small variance.
The other, e1(x, t), can be arbitrarily large, but it is only defined on the occluded domain x ∈ Ω(t).
Thus the problem is to simultaneously infer optical flow w(x, t) as well as the occluded region
Ω(t), that is time-varying, multiply-connected, and in general can be rather complex (think of the
occlusions induced by motion in front of a barren tree). Ayvaci et al. [2] have framed this problem as
a convex variational optimization, and solved it with numerically efficient Augmented Lagrangian
methods. We will therefore take this stage as a building block and assume that, at each time t, we
have an estimate of the characteristic function of the occluded region, Ω̂(t) ⊂ D, as well motion
field ŵ(x, t), x ∈ D\Ω̂(t) that solve

ŵ(x, t), Ω̂(t) = arg min
w,Ω
‖e2‖`2(D) + λ‖e1‖`1(D\Ω) (2)

s. t. I(x, t) = I(w(x, t), t− 1) + e1(x, t) + e2(x, t)

plus some regularization of the motion field w; λ is a tradeoff factor (multiplier). Note that we have
not included a range transformation κ(t), since we do not expect significant contrast changes between
adjacent images, and the small residual can be lumped into e2. In Fig. 1, we show results on a few
test sequences based on the algorithm used. While optical flow tells us what regions of the images
are occluded, and therefore regions where we cannot exploit temporal consistency, not every pixel
in the co-visible region has a unique correspondent. Those that do can be encoded once and then
“tracked” through subsequent frames. Those that do not can be sampled or filled in independently in
successive frames, as we discuss in Sect. 2.2.

Encoding the motion field w(x, t) is, in principle, more than twice as costly as encoding the
image, since I(x, t) ∈ N, whereas w(x, t) ∈ R2. So, to achieve compression one has to exploit
the spatial regularity of the motion field, that is assumed to be piecewise smooth everywhere away
from occlusions (unlike the image that cannot be realistically assumed to be piecewise smooth). For
any given tolerance ε, one can devise a partition of the co-visible region such that the cumulative
approximation is within ε. This corresponds to a motion segmentation task. We break this process in
two parts. The first involves detecting contours and the second part involves using those contours
to segment the image frame. Breaking this process into these two components allows us to retrieve
several different segmentations depending on the strength of the boundary. As we will see, this
enables adaptive merging of neighboring regions to trade off complexity and fidelity. We use [1] for
contour detection and segmentation. In Fig. 2 we show representative samples of this process.

2.2 Proper sampling
Co-visible regions can be put in correspondence, in the sense that there exists a deformation of
the co-visible domain that maps one image onto another: D\Ω(t) = {w(x, t) | x ∈ D\Ω(t− 1)}.
However, individual pixels can have multiple correspondents, for instance when the co-visible region
is homogeneous or self-similar. These regions will be spatially encoded as “textures” in Sect. 2.3.
Everywhere else, we can establish a local reference frame via a process known as canonization
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Figure 1: (COLOR) Occlusion detection and optical flow. Original images (top) and optical flow
(bottom), visualized according to the color scheme shown in the top left corner of each image. Black
regions are occluded, so no motion estimate is available since there is no region in image I(x, t− 1)
that, transported with w(x, t) yields I(x, t).

Figure 2: (COLOR) Segmentation [1]. Varying a threshold yields structurally different segmenta-
tions. Original test frame (left). Segmentation using a low threshold (center). Segmentation with a
higher threshold (right).

[18]: Co-variant detector functionals [13] operate on a multi-scale representation of the data and
are used to detect extrema that correspond to “canonical” local frames. However, we do not know
whether such extrema are due to the “scene” (e.g. a material transition), or are “aliasing” phenomena
(e.g. discontinuities due to spatial quantization or noise). Ideally, for the discretization to be a
proper sampling, we would like for the response of co-variant detector functionals operating on
the image I(x, t) to be topologically equivalent to the response of the same functionals operating
on the scene ρ ◦ w(x, t)−1. Unfortunately, we do not know the scene, so this hypothesis is not
testable. However, under the assumptions of Lambertian reflection and co-visibility, proper sampling
is equivalent to topological consistency between different images of the same scene, for instance
I(x, t), I(w(x, t), t− 1). The portions of the regions that are properly sampled are then “trackable”
[13], and can be encoded once. The aliased structures are instead lumped in the ensemble description
that is treated by the texture module described in Sect. 2.3.2. Additional processing can be performed
to aggregate tracks over multiple views [19]. Covering trajectories on sequences are shown in Fig. 3.
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Figure 3: Covering of trackable regions [19]. The rest is encoded by the texture module.

2.3 Structure/texture partition
Once proper sampling is established, and therefore temporal redundancy is accounted for, we
consider spatial regularity. This can be of two kinds: Spatial regularity of trackable regions and their
description [13], and spatial stationarity of the (colored) noise process that is independently sampled
in different temporal frames. This corresponds to the notions of “regular” and “stochastic” textures
[23].

As discussed in Sect. 2.1, encoding the motion field point-wise in trackable regions would
be costly. Given a segmentation, we can assign the same motion vector to the entire region, or
a sub-partition. Unfortunately, segmentation does not usually respect structure/texture partition
and can contain areas that are trackable, or not. Since scale composed with quantization is a
semi-group, rather than a group, we have to consider multiple segmentations at different scales
(hierarchical segmentation) and aggregate motion vectors only at the finest scales. We then merge
regions in a greedy fashion to satisfy both motion constraints and structure/texture partition. We
show representative results in Fig. 4.

Figure 4: Original Test Sequences (top). Texture/Structure partition (bottom). Regions in green are
labeled trackable regions and we can assign a motion vector to them. Textured regions are either
homogenous regions or stochastic textures and it is preferable to spatially predict them since they
cannot be tracked.
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2.3.1 Encoding trackable regions
For a trackable region in frame I(x, t+1), the encoder can select either temporal or spatial prediction.
For temporal prediction, we calculate the median optical flow within the region and use it to find
the corresponding region in I(x, t), together with the residual error. This is done for each region
independently. This allows the encoder to select prediction rules (spatial or temporal) independently
for each region. Note that at occluded regions, we do not perform motion estimation.

Spatial prediction can be performed in trackable regions provided that the motion, and the local
description of the image around each co-variant frame, is spatially regular, so the image can be
considered as a sample from a stationary and ergodic spatial process. Spatial prediction thus yields a
form of texture segmentation. However, unlike the case described in the next section, the prediction
has to be temporally consistent. To this end, we calculate the mean value of each region in an image
and propagate it through its motion vectors, to temporally adjacent images. Again, this process is
performed independently for each region and yields a (spatial) prediction, together with a residual.

2.3.2 Encoding non-trackable regions
Non-trackable texture regions can be encoded independently in each image, since by definition there
is no temporal consistency. One can still exploit spatial redundancy and perform temporal prediction
as done in Sect. 2.3.1. Rather than spatially extrapolating a realization we extrapolate statistics and
sample independently at each image, thereby eliminating temporal consistency. This is equivalent to
texture synthesis and is described next. In addition, the encoder has still the option of using temporal
prediction, to enable overcoming errors in the texture/structure partition.

In the texture synthesis mode, we chose to use a variation of the algorithm of [12] because it is
relatively efficient and gives results that are perceptually acceptable, even though we are aware that
we will pay a price in terms of PSNR. This non-parametric sampling-based approach takes a subset
of a texture region and expands it. This is accomplished by minimizing the following energy:

Et(I|B ; {I|N(B)
}) =

∑
p∈N(B)

‖Ip − Îp‖2 + µ
∑

p∈N(B)

‖DIp −DÎp‖2 (3)

where I|B is a vectorized version of the textured region to be synthesized and {I|N(B)
} is the set of

vectorized neighborhoods from the input texture. The vectors Îp and Ip are neighborhoods of the
input and synthesized textures respectively, centered at pixel p, that are closest in appearance. D is
the differentiation operator. In principle, N(B) can be every pixel on the synthesized image grid.
For computational complexity reasons, we only consider a subset of them.

The energy above is minimized using an EM-like alternating minimization. The first step
minimizes the energy by direct differentiation with respect to Ip that yields a linear system of
equations. The second step uses the calculated Ip to find the set {Îp}, using nearest-neighbor (NN)
search. The process is repeated until the decrease in energy is negligible, as customary. In addition, a
re-weighting scheme is used to improve outlier rejection (similar to iteratively re-weighted Least
Squares (IRLS)). The scheme is repeated over 3 neighborhood sizes: w = [32, 16, 8]. Finally,
the minimization procedure is repeated over a number of different resolutions (i.e. image sizes).
Therefore, the whole algorithm is performed in a multi-resolution multi-scale fashion. The relative
weight parameter is set to µ = 10.

The algorithm works well for fine-scale textures; however, textures that exhibit structure at coarse
scale (e.g., the bricks in Fig. 5) require large region sizes to be captured. This is particularly severe
when the regions are selected with a uniform prior. To minimize this effect, we replace M-Step with
the following minimization problem for all Ip, p ∈ N(B):

α̂ = arg min
αp

‖Ip − Y αp‖22 + λ||αp||1 (4)
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Figure 5: Low resolution image patches (top). Image Patches of higher resolution synthesized with
our algorithm (bottom).

where Y = [I1 I2 . . . IN ] are the concatenated vectorized neighborhoods from the set {I|N(B)
}

and N is the total number of neighborhoods in the original image that we consider. Thus, instead
of selecting one NN, we choose a sparse linear combination. This improves the stability of the
algorithm in degenerate cases. We show results of our texture synthesis algorithm in Fig. 5. Artifacts
are still visible for the brick texture, but they are less severe than without this additional step. To
synthesize textures, we always encode a quarter of the size of the region and synthesize the rest.

2.4 Encoding video frames
After calculating the predicted images using the spatial, temporal and synthesize modes, the encoder
chooses for each region the prediction mode that yields the smallest residual. We maintain an index
function for the prediction mode used for each region. The predicted and error images are then
formed. If a region is predicted temporally, the predicted region is taken to be the one calculated
with the temporal prediction. The same applies for the other two modes. Since each region has
been predicted independently, there is no issue of inconsistency. The error image is transformed
and quantized in the same way as in H.264 [11], zig-zag scanned and entropy encoded. We encode
the boundary indicator function of the regions using run length encoding (RLE). We also use RLE
for the indicator function of the occluded pixels. We use entropy coding on the output of the RLE.
Motion vectors, mean values for spatial prediction and the small patches for textured regions are also
entropy encoded. The predicted image plus the error image form the new image frame, which is then
subsequently used as the previous frame for encoding the following frame. Hence the decoder is
embedded in the encoder, similar to modern coding standards. All quantities are quantized at the
quantization level specified by the user.

3 Experiments
To evaluate our encoder we compared its performance with four different encoding methods. In
the baseline method used (blue curve in Fig. 7), we encoded the video sequence by quantizing and
entropy coding each frame independently. In the second method (yellow curve) we calculated the
difference image between the last encoded frame and the next frame. We quantized and entropy
coded the difference. The other two methods we compared with was MJPEG (green curve) and
H.264 JM ver.18.0 (orange curve)2. In the H.264 JM implementation, we used default parameters

2The H.264 JM implementation can be found at http://iphome.hhi.de/suehring/tml/
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Figure 6: Qualitative results of our encoder. Predicted image using spatial, temporal and texture
synthesis prediction modes (left). Residual error: black corresponds to zero error, white to large
(center). Reconstructed video frames (right).

provided by the authors. We varied the performance of the encoder by changing the quantization
parameters. In our encoder we fixed the parameters for all experiments and we also only varied the
quantization parameter. For optical flow estimation and tracking we used the default parameters
set by the authors of each paper. For the hierarchical segmentation we used 3 levels. In Fig.6 we
show the prediction performance of our encoder. The left column corresponds to the predicted image.
Small or zero error (middle column) can be achieved in most of the image domain. Where large
deformations of the domain occur, the translational model fails (e.g. the face of foreman).

Quantitative results are shown in Fig. 7 for four video sequences of QCIF resolution (city, flower
garden, mobile, coastguard). PSNR scores of the Y-channel are reported. We used 50 frames from
each video sequence 3. It can be seen that our encoder significantly outperforms the other methods at
almost all bit rates. The biggest gain comes at high bit rates where the gain in PSNR in using our
encoder compared to others becomes significantly large.

Following is a break-down of the contribution of each module to the overall computational cost.
For VGA resolution video, the GPU implementations of the optical flow, tracking and segmentation
algorithms take 10, 2 and 13 seconds respectively. Segmentation can be ran in parallel with the other
two algorithms. Texture synthesis takes approximately 5 seconds per frame. It was found that the
average encoding time per frame was 21 seconds. The reported computational time was recorded on
a dual core 2.4 GHz desktop with an NVIDIA GeForce GTX 560 Ti GPU.

3The video sequences can be found at http://media.xiph.org/video/derf/
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Figure 7: Quantitative comparison of our encoder with other methods. Our method significantly
outperforms all other methods (including H.264) in a wide range of kbps in terms of PSNR. Results
shown are for the sequences city (upper left), flower garden (upper right), mobile (bottom left) and
coastguard (bottom right). Comparisons were ran for a duration of 50 frames.

4 Discussion
We have presented a modeling framework for video compression that exploits the basic phenomenol-
ogy of optical data-formation, focusing on occlusion and scale. Temporal consistency is exploited
by detecting co-visible regions (as the complement of occluded regions) and encoding them once,
together with a compressed motion model. Spatial consistency is exploited by partitioning the data
into structures (that are encoded by sparse bases) and “texture” (samples from a locally stationary
distribution), that can be encoded in ensemble form, and sampled at decoding. The decision as to
what is “properly sampled”, and therefore can be tracked, as well as what is visible, can only be
made by considering multiple images.

While the compression performance of our approach is demonstrably better than existing schemes,
this is not surprising since the model class we consider is far larger than that implied in traditional ap-
proaches. The obvious downside is a significant computational complexity. However, we believe that
rather than incrementally refining intrinsically linear superposition models with additive uncertainty,
embracing the full non-linearity implied by occlusion and scaling is necessary to break the video
compression wall and develop the next generation of video compression schemes. Also, the results
we have displayed use standard PSNR as a performance score. Clearly this is inadequate for the task
of compressing video for human fruition. A perceptual score is more appropriate, although the lack
of a universally accepted model of perceptual performance prompted us to use the more conventional
PSNR. It is our intention to further the development of perceptual scores, and integrate them into the
spatio-temporal encoding of the scene radiance, so that albeit not observable (unique), at least the
model can be minimal with respect to the specific task at hand. This is subject of on-going research.
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