
Texture Compression

Georgios Georgiadis1 Alessandro Chiuso2 Stefano Soatto1

1UCLA Vision Lab 2Department of Information Engineering
University of California, Los Angeles University of Padova

Los Angeles, CA 90095 Padova 35131, Italy
{giorgos,soatto}@ucla.edu chiuso@dei.unipd.it

Abstract
We characterize “visual textures” as realizations of a stationary, ergodic, Markovian process,

and propose using its approximate minimal sufficient statistics for compressing texture images. We
propose inference algorithms for estimating the “state” of such process and its “variability”. These
represent the encoding stage. We also propose a non-parametric sampling scheme for decoding, by
synthesizing textures from their encoding. While these are not faithful reproductions of the original
textures (so they would fail a comparison test based on PSNR), they capture the statistical properties
of the underlying process, as we demonstrate empirically. We also quantify the tradeoff between
fidelity (measured by a proxy of a perceptual score) and complexity.

1 Introduction

Figure 1: Left to right: regular, stochastic, domain-deformed and range-deformed textures.

“Visual textures” are regions of images that exhibit some form of spatial regularity, possibly
after a suitable deformation of either the domain or the range of the image (Fig. 1). The notion of
texture has a long history in visual perception, computer vision, computer graphics, computational
geometry, content-based image retrieval, all with slightly different characterizations. Thus our first
aim is to define textures in the context of lossy compression. To be more precise, we accept a loss,
even a significant one, relative to the task of reproducing an exact replica of the original texture, as
reflected for instance in the PSNR of their pixel-wise difference. However, ideally we would like our
scheme to be lossless with respect to the task of perception by humans. Unfortunately, perceptual
similarity is difficult to measure, and even more difficult to formalize analytically. Therefore, we
postulate that images of textures are samples from some underlying stochastic process, and that
perceptual similarity relates to the similarity between such processes. Similarity could be measured
by some kind of distance between minimal sufficient statistics, if these could be computed. In
particular, we assume that if two processes have the same sufficient statistics, the samples they
generate are perceptually indistinguishable. This postulate is not unreasonable, provided we are
willing to consider higher-order statistics, as the case of second-order [7, 8] has long been refuted
in psychophysical experiments [12]. So, if we could infer the minimal sufficient statistics of the
underlying process from one sample of it (an image), we would encode and store them, and then
at decoding just generate a random sample. This would be, by postulate, a (perceptually) lossless
compression scheme.

1

Unfortunately, finite-dimensional minimal sufficient statistics exist only in special cases [6],
and even then, they cannot be inferred from a finite sample. Therefore, our goal is to devise a
lossy compression scheme by inferring approximate sufficient statistics of the underlying process,
where fidelity is traded off with sample size. Since the “true” underlying process is not known, we
cannot measure fidelity by comparing the estimated statistics with the true ones, but we can evaluate
it by comparing samples generated from them. Therefore, ultimately the evaluation of a texture
compression scheme has to be performed empirically, which we do in Sect. 5.

2 Prior related work and contributions
This manuscript relates to a vast literature on texture analysis ([13] and refs.), perception ([12] and
refs.), synthesis and mapping ([3] and refs.), texture phenomenology ([18] and refs.), exemplar/patch
based methods (structural vs. geometric vs. probabilistic [21, 5, 25]) that we cannot realistically
review in the limited scope of this paper. We refer the reader to [23] for an overview. Our work is
also naturally related to the Minimum Description Length (MDL) principle [16], where the aim is to
exploit regularities in the data to achieve compression. Whereas in traditional implementations of
MDL and lossy MDL [15, 2] the approach taken is to compress pixel values, in our work we aim
to “compress” the source that generates them, i.e. the scene. Other traditional texture compression
schemes typically involve a transformation stage (e.g. by applying the Discrete Cosine Transform
(DCT) or the Discrete Wavelet Transform (DWT) to the image) which aims to compact the spectral
energy into a few coefficients. These coefficients are then quantized and typically the quantization
steps are set by taking into account some perceptual metric [4, 14].

Despite a wealth of work, however, there are relatively few attempts to clearly define and
analytically characterize textures. In this work, we provide a definition based on standard concepts
from stochastic processes such as stationarity, ergodicity, Markovianity (Sect. 3-4). The definition
naturally lends itself to inference algorithms for encoding a texture, by inferring approximate
sufficient statistics (Sect. 4.2), and decoding using non-parametric sampling, via a straightforward
modification of [9] that captures the correct Markov structure inferred from the data. We characterize
the performance of our compression scheme empirically, and point to some challenges in the
determination of the (multiple) intrinsic scales of textures. We assume that the domain where a
texture region is defined is given to us, and focus on its compression (coding/decoding), as opposed to
its segmentation from the non-texture region. Consequently, all examples we use in our experiments
include images that contain exclusively texture regions.

3 Background
A (spatially) quantized image {Iij}(i,j)=1:(N,M) ∈ RM×N is obtained by averaging a function
I : D ⊂ R2 → R; x 7→ I(x) on a neighborhood of xij ∈ D of size ε > 0, Bε(xij): Iij =

1
|Bε|
∫
Bε(xij) I(x)dx where |B| is the area of B. In general, Iij = I(xij) + nij where nij = nij(I) is

the quantization error.

3.1 Stationarity
We interpret the quantized image as a sample (realization) from a process {I} distributed according
to a certain (unknown) distribution I ∼ dP (I). While the probabilistic description of this process
can be technically problematic, sampling from it is straightforward, as it corresponds to measuring
pixel values in certain subsets of the image domain. Consider a subset ω ⊂ Z2, with cardinality
|ω|, and functions φ (statistics, or “features”) that map image values onto a vector space RW .
A “local” feature φω

.
= φ(I(ω)) operates on a restriction of the image to a subset ω ⊂ Z2,

I(ω)
.
= {I(x), x ∈ ω}. A probability distribution dP (I) on the set of images induces a distribution

on the feature: dP (φω) = dP (φ(I(ω)). We also consider a group of planar transformations g ∈ G,
with g : R2 → R2. These represent “deformations” or “distortions” of the image due to, for instance,

2

a change of vantage point, or a deformation of the scene [19]. Given a group G, a set ω and a
function φω, we say that the distribution dP (I) is G-stationary in φω if there exists a g ∈ G such
that E(φg(ω)) is translation-invariant, that is

E(φg(ω)) = E(φg(ω)+T), T ∈ R2 (1)

where g(ω) = {g(x) | x ∈ ω} ∩ Z2 and g(ω) + T = {g(x) + T | x ∈ ω} ∩ Z2. If (1) is satisfied
only for T that belong to a discrete subgroup of planar translations (Frieze symmetries, see [11]),
then the process is cyclo-stationary.

In practice, the image is only defined on a bounded domain, so we introduce the notion of local
stationarity: Given ω and a superset ω̄ ⊃ ω, dP (I) is locally stationary in ω̄ if (1) is satisfied not for
all T ∈ R2, but only for those such that g(ω) + T ⊂ ω̄. We call such T ’s admissible, and σ = |ω̄|
the stationarity scale. Note that the value of the statistic φω remains unchanged if we consider any
superset of ω; in particular, we have φω = φω̄. The largest admissible region where the stationarity
assumption is satisfied will be called Ω. Note that ω ⊂ ω̄ ⊂ Ω.

Stationarity implies that there is an underlying statistical model which describes the image in
the region Ω. However, when it comes to performing statistical inference, one has to ensure that
this model can be consistently inferred from data. This requires linking the sample properties to the
ensemble (probabilistic) properties, and is captured by the notion of ergodicity.

3.2 Ergodicity
A stationary process is ergodic if sample averages converge to ensemble averages (expectations):

1

N

N∑
i=1

φg(ω)+Ti
a. s.−→ E(φg(ω)) (2)

for all Ti ∈ R2. Stationarity can then be tested by comparing samples of I in g(ω) to admissible
samples in the transformed domain g(ω) + Ti. The maximum number of different samples N is
bounded by the area of ω̄, so for any finite |ω̄| there will be a threshold, θ = θ(|ω̄|) to decide whether
the process is stationary, yielding an empirical stationarity test. Note that the sole fact of performing
an empirical stationarity test from one image, implicitly requires that the underlying process is
ergodic. The fact that a statistic is stationary does not imply that it is sufficiently informative in the
sense of enabling the statistical characterization of the process. To that end, we introduce the notion
of Markovianity below.

3.3 Markovianity and sufficient reduction
Once established that a process is stationary, hence spatially predictable, we can inquire on the
existence of a statistic that is sufficient to perform the prediction. We say that a process is Markovian
if every set A ⊂ Ω admits a neighborhood N (A), such that a statistic φN (A) computed in N (A)
makes I(A) independent of the “outside” I(Ac) , where Ac is the complement of A in Ω:

I(A) ⊥ I(Ac) | φN (A). (3)

This makes the process I with measure dP (I) a Markov Random Field (MRF). Of particular interest
is the case when the neighborhood structure N (A) is induced by a set ωx

.
= N (x) which satisfies

the property ωx+T
.
= N (x + T) = ωx + T = N (x) + T , ∀T ∈ Z2, so that the neighborhood

structure is spatially homogeneous. Of course any stationary Markov random field satisfies this
property. We shall denote by Nω(A) the neighborhood structure induced by ω where the subscript
x has been dropped for obvious reasons. Note that the region ω and the statistic φω that we use to
define Markovianity are not the same we used to define stationarity in the previous section. We are
overloading the notation to avoid introducing too many new symbols.

3

Figure 2: Affine and projective textures and their rectified versions. The transformation g can be determined
in pre-processing via canonization [24, 17], or can be described to parametrize the statistic φω and inferred as
part of the compression process (i.e. in the search for ω).

Remark 1 (Markov neighborhoods) The “neighborhood” ω\x of x consists of all pixels that are
connected to x according to the Markov structure of the underlying process, and should not be
confused with the set of pixels that are connected to x according to the lattice structure of the image
(e.g the 4-connected or 8-connected neighbors). While it may be possible to predict the value of a
pixel x given its lattice neighbors, this does not imply that such a neighborhood captures the Markov
structure. For instance, consider a checkerboard image: The value of a pixel (black or white) can be
predicted given its lattice neighbors, but this does not mean that |ω| = 8 pixels, as this neighborhood
does not allow predicting the value of pixels outside ω. In this case, the correct ω must include at
least one period of the underlying signal. In fact condition (3) has a global nature and it is equivalent
to I(x) ⊥ I(ωc) | φω−x once the neighborhood structure has been fixed.
Equation (3) establishes I(Nω(A)) as a (Bayesian) sufficient statistic for I(A). In general, there will
be many regions ω that satisfy this condition; the one with the smallest area |ω| = r, is a minimal
sufficient statistic. From now on, we will refer to φω as the minimal Markov sufficient statistic.

4 Textures
A texture is a region of an image that can be rectified into a sample of a stochastic process of a planar
lattice that is locally stationary, ergodic and Markovian. More precisely, assuming for simplicity
the trivial (translation) group g(x) = x+ T , a region Ω ⊂ D ⊂ R2 of an image is a texture at scale
σ > 0 if there exist regions ω ⊂ ω̄ ⊂ Ω such that I is a realization of a stationary (Eq. 1), ergodic
(Eq. 2), Markovian process (Eq. 3) locally within Ω, with I(ω) a Markov sufficient statistic and
σ = |ω̄| the stationarity scale.

If the group G is non-trivial, we say that a region Ω is a texture relative to the group G at scale
σ > 0 if there exists a group element g ∈ G such that I ◦ g−1 is a texture relative to the translation
group. Then, the Markov sufficient statistic is I ◦ g−1(ω) and the stationarity scale σ/|Jg|, where
the denominator is the determinant of the Jacobian of G computed at g. The group element g can
be found by canonization [17]; for the specific case of the projective group, [24] provides a simple
rank-minimization-based procedure (Fig. 2).

4.1 Characterization
Let us assume, for the moment, that the group G is trivial (planar translations). Recall that the
definition of the Markov sufficient statistic implies that ω is such that, ∀A ⊂ Ω,

I(A) ⊥ I(Ω−A)︸ ︷︷ ︸
“outside′′

| I(Nω(A))︸ ︷︷ ︸
“inside′′

(4)

or, in terms of Kullback-Liebler divergence between conditional distributions:
KL (p(I(A)|I(Nω(A))); p(I(A)|I(Ω−A))) = 0 (5)

and yet again in terms of conditional entropy, H(I(A)|I(Nω(A))) = H(I(A)|I(Ω−A)). We can
therefore seek for ω ⊂ Ω that satisfies the above condition. Without a complexity constraint, there
are many regions ω that do so; we therefore seek for the smallest one, by solving

ω̂(β) = arg min
ω

[
supA∈ΩH(I(A)|I(Nω(A))) +

1

β
|ω|
]
. (6)

4

Note that this is a consequence of the Markovian assumption; it can be shown that the solution ω̂(β)
to (6), which can be seen as a version of the Information Bottleneck principle [20], converges to the
sufficient statistics ω with β “large enough” (say β →∞). As a special case, we can choose ω to
belong to a parametric class of functions, for instance square neighborhoods of x, excluding x itself,
of a certain size σ, Bσ(x), so the optimization above is only with respect to the positive scalar σ.
The conditional independence relation (4) is symmetric, so we can swap “inside” and “outside”

I(Ω−A)︸ ︷︷ ︸
“future′′

⊥ I(A)︸︷︷︸
“past′′

| I(Nω(A))︸ ︷︷ ︸
“state′′

. (7)

In an analogy with time, we can think of the outside as the “future”, and A as the “past”. Then
the “ring” between the past and the future plays the role of the state in an identification prob-
lem: the Markov sufficient statistic (or state) is the one that makes the future independent of
the past. In practice, we do not know the probabilistic description of the random field, so the
best we can do is to approximate the entropy in (6) from sample data H(I(A)|I(Nω(A))) '
− 1
M

∑M
i=1 log p(I(Ai)|I(Nω(Ai))), where Nω(Ai) is a neighborhood of Ai

.
= A+ Ti ⊂ Ω. Here

p can either be finitely parameterized or specified in a non-parametric fashion by samples in a region
ω̄, with ω ⊂ ω̄ ⊂ Ω. For instance, given ω̄ we can draw K regions of size r = |ω|. The larger
the r, the smaller the K, so we can write K = K(r, σ) with σ = |ω̄|. For instance, if ω̄ is a
square neighborhood of side σ, then K = 4rσ − 4r2 + 1. To compute log p(I(A)|I(Nω(A))),
one can “synthesize” the image in the set A, given fixed values of I(Nω(A)) which can be
done by a nonparametric texture synthesis algorithm (see e.g. [3] and section 4.3) for fixed ω
and ω̄. If we call Î(A) the “synthesized” texture in A, this yields an estimator of the entropy
Ĥ(I(A)|I(Nω(A)))

.
= log

(
1
M

∑M
i=1 d(I(Ai), Î(Ai))

)
. Note that this function depends on both

r = |ω| as well as σ = |ω̄|. The larger ω̄ the better the estimate, so we must trade off σ. However,
the size of ω is automatically traded off in K(r, σ): Choosing r = σ will yield only one sample
K = 1, and therefore the prediction error d(I(A), Î(A)) will be large. Similarly, too small r will
cause many false matches of I(ω − {x})) with poor predictive power for I(x). The tradeoff will
naturally settle for 1 < r < σ. Therefore, we can simultaneously infer both σ and r by minimizing
the sample version of (6) with a complexity cost on σ = |ω̄|:

r̂, σ̂ = arg min
r=|ω|,σ=|ω̄|

Ĥ(I(A)|I(Nω(A))) +
1

β
|ω̄|. (8)

Note that both ω and ω̄ will be necessary for extrapolation: ω defines the Markov neighborhood used
for comparing samples, and ω̄ defines the region where such samples are sought to approximate the
probability distribution p(I(A)|I(Nω(A))).

4.2 Inference
The definition of texture in terms of MRF presents a challenge for compression, since the inference
of ω requires a search over all possible subsets of Ω and its separators (Remark 1). To infer ω in
a computationally viable way, we propose an alternative which is based on [1]. Because of the
stationarity assumption, and given that we have chosen to parametrize ω with squared neighborhoods,
we simply need to infer its size |ω|. Consider therefore a region of growing size |ωk| = 1, 2, . . . , n
and any statistic φ computed in ωk, φ(I(ωk)). Its entropy as a function of k will follow a “staircase”
behavior [1], where the local minima correspond to ki = |ω|. This is consistent with the fact that
textures exist at multiple scales (see Fig. 3). For the purpose of compression, we are interested
in the smallest ki. This algorithm is just an approximation, as the staircase behavior is implied by
stationarity and Markovianity, but there may be pathological cases where the entropy of certain
statistics can exhibit staircase behavior and yet the region does not satisfy the definition of texture.
Finally, given ω we can then infer ω̄ using Alg. 1.

5

Algorithm 1: Algorithm for inferring ω̄
Initialize a set R = ∅, and a threshold ε
Sample N patches {xi : i = 1, . . . N} of size |ω| from Ω
foreach xi do

Compute D = d(I(xi), Î(xi)) where Î(xi) is the Nearest Neighbor of I(xi) among the rest
N − 1 patches
if D < ε then

R := R ∪ xi
Let ω̄ be a squared sampled region from Ω of size |R|

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

E
nt

ro
py

Size

Multiscale Textures

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Cloth

Figure 3: Multiscale analysis of textures. Top row, left to right: Texture “within” texture. Entropy plot.
Synthesized texture at small scale, synthesized texture at a higher scale. Bottom row: Different textures
appearing at different scales. The regions surrounded by the blue rectangles are the textures at the smaller scale
(shown in the entropy plot) and the regions surround by the red rectangles are the textures at the larger scale.
For each scale we show both ω and ω̄ (with the bigger rectangle of each color corresponding to the respective
ω̄). It can be seen that the smaller scale legitimately captures the texture of a single rope thread, but fails to
capture the texture of the rug that consists of woven threads. That is captured by the larger region (right).

4.3 Extrapolation
Given a compressed representation I(ω̄), we can in principle synthesize novel instances of the
texture by sampling from dP (I(ω)) within ω̄. In a non-parametric setting this is done by selecting
neighborhoods I(ω) within ω̄. To extrapolate the texture from a given sample I(ω̄), compatibility
conditions have to be ensured at the boundaries of ω̄. Hence, to satisfy both appearance and
compatibility conditions, we minimize the following energy function [9]:

E(Îs; I(ω̄)) =
∑

ωsyn∈Ωsyn

‖Îωsyn − Iωin‖2 (9)

where Îs is the textured region to be synthesized and I(ω̄) is the input texture. The vectors Iωin and
Îωsyn are pixel values of neighborhoods from the input and synthesized textures respectively, centered

at the central pixel of ωin and ωsyn neighborhoods. We sample ωsyn on a grid every s =
√
ni
4 , where

ni is the cardinality of Îωsyn and sample ωin on a grid at every pixel location on the domains of
the synthesized and input textures respectively. We let Ωsyn denote the collection of ωsyn. The
Algorithm used to minimize the above energy function is given in Alg. 2. Additionally, the process
is performed in a multi scale fashion. Whereas in [9] the scales were set manually, in our scheme
they are selected automatically based on |ω| inferred by our algorithm. We repeat the procedure over
3 neighborhood sizes: {|ni| : i = 1, 2, 3} = [|ω|, |ω2 |, |

ω
4 |] and over a number of different output

6

Algorithm 2: Texture Extrapolation
Initialize Î(0)

s to a random texture and sample Î(0)
ωsyn , ∀ωsyn ∈ Ωsyn

for i = 1, . . . , N do
Let I(i)

ωin be the Nearest Neighbor of Î(i−1)
ωsyn

Update Î(i)
s = argminÎsE

(i)(Îs; I(ω̄))

Resample Î(i)
ωsyn ,∀ωsyn ∈ Ωsyn

if Î(i)
ωsyn = Î

(i−1)
ωsyn ,∀ωsyn ∈ Ωsyn then

break;

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

E
nt

ro
py

Size

Grass

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8
E

nt
ro

py

Size

Greencells

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Metallic texture

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Stochastic Texture

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

E
nt

ro
py

Size

Rope

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Cloth

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Brick Wall

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

E
nt

ro
py

Size

Rocks

Figure 4: Entropy plots for the 8 textures shown in Fig 5. The black line indicates the scale (specifically the
size of the side) of ω selected by our algorithm.

image sizes.

5 Experiments
We show results of our texture compression algorithm in Fig.5. In the odd columns we show the
input textures (Ω is the entire image domain). Within Ω we show ω and ω̄ inferred by our algorithm
by indicating their boundaries with red boxes. On the even columns we show the synthesized
textures from ω̄ using our extrapolation algorithm. Qualitatively, the original textures are successfully
re-synthesized, which shows that ω̄ is sufficient to capture the characteristics of that texture within
the threshold used for inference. To determine |ω| we calculate the sampled entropy at each scale and
we use an automatic scale selection algorithm: we calculate, µe, the mean value of entropy in the last
k scales (in these experiments k = 10) and the standard deviation, se, of the entropies calculated
at all scales. We set a threshold λ = µe − se

6 and look for the smallest scale at which the entropy
exceeds λ.

To determine ω̄, according to Sec 4.2, we need to accept “representatives” that are “close” to
each patch sampled from Ω. In these experiments, we sample 3000 patches from Ω (which is related
to the parameter θ = θ(|ω̄|) mentioned in Sec. 3.2) and accept as a representative any patch that is
less than 3× 10−3 (per pixel distance) away from its nearest neighbor.

In Fig. 4 we show the entropy plots of the histograms of pixel values for the same textures. In
black we show the location detected by our algorithm as the scale of ω. These sizes correspond to
the small red boxes in Fig 5. Although the histogram is a vey crude first-order statistic, it exhibits the
anticipated behavior, and is sufficient to capture the scaling properties of the texture.

To further illustrate the multi scale nature of textures, we calculate the entropy of the intensity
values as a function of increasing size of ω for a synthetic texture (Fig. 3). A synthetic configuration
of red lines on black background is surrounded by another texture exhibiting different spatial

7

Figure 5: Odd Columns: Input texture. The large red box indicates the inferred scale of ω̄. The smaller
red box indicates the inferred scale of ω. Even Columns: Synthesized textures from ω̄. The perceptual
characteristics of the textures have been captured, indicating that I(ω̄) is indeed a Markov sufficient statistic,
at least sufficient for the purpose of perceptual comparison.

characteristics. The entropy of this image is shown in Fig. 3. It can be observed that two plateaus
are formed, one corresponding to the first texture and the second corresponding to the combination
of the two textures. Synthesizing at these two scales, one can generate different types of textures.
Another example is shown in the bottom row of the same figure. Here, the same texture is exhibiting
different repetitive patterns at different scales. The synthesized textures at these two different scales
(indicated in the entropy plot) are shown on the bottom right.

As expected, the quality of the synthesized texture depends critically on the size of ω̄, and
so does storage cost. In the next experiment, we attempt to characterize such a “rate-distortion”
tradeoff. Distortion is not easy to measure since the goal is to create samples that are perceptually
indistinguishable, but could differ significantly at the pixel level. Therefore, standard distortion
figures such as PSNR are of limited use. Standard perceptual similarity scores, such as SSIM [22],
similarly fall short of capturing the perceived quality of the synthesized textures (see Fig. 6). We
therefore filter the synthesized and original textures by a filter bank [10]; then, we calculate the
histograms of the filter responses and used the χ2 distance to measure the distance between each
filter response of the two textures. We take the texture (dis-)similarity to be the averaged result over
all distances for each histogram pair (see Fig. 6). The distance decreases as the size of ω̄ increases
indicating that the input and synthesized textures are becoming increasingly similar.

Fig. 7 illustrates the role of the group G in compression. The texture is compressed and re-
synthesized without canonization of the rectifying homography. This shows that the Markov sufficient

8

50 60 70 80 90 100 110 120 130 140 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
 E

rr
or

Size

Grass

50 60 70 80 90 100 110 120 130 140 150
0

0.2

0.4

0.6

0.8

1

1.2

D
S

S
IM

Size

Grass

40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

R
M

S
 E

rr
or

Size

Metallic Texture

40 50 60 70 80 90
0

0.5

1

1.5

D
S

S
IM

Size

Metallic Texture

Figure 6: Rate-Distortion curves. Top: Mean distance of filter response histograms against ω̄ size. At each
point, we show the synthesized texture given that scale of ω̄. At the top right we show the original texture. The
qualitative behavior, as expected, indicates that larger size of ω̄ yields synthesized textures that are increasingly
similar to the original sample. Bottom: Plots of RMS Error and DSSIM [22] as a function of the size of ω̄.
Standard metrics used for measuring the fidelity of a reconstructed image fail to capture the perceptual quality.

Figure 7: The texture in Fig. 2 is compressed and re-synthesized without prior rectification. (first and second
figures). The texture is then rectified, compressed, re-synthesized and retransformed back with the inverse of
the canonizing transformation (third and fourth figures). The two approaches achieve approximately the same
perceptual quality but the rectified texture does so at a lower complexity cost (|ω̄rectified| ' | ω̄original

4 |).

statistic is fairly large. Compressing the rectified texture, and then transforming the synthesized
texture by the inverse of the canonizing transformation, yields a perceptually similar reconstruction at
a smaller coding cost, even after accounting for the 8 numbers necessary to encode the homography.

In terms of computational complexity, for the experimental setup discussed here, inferring ω
takes around 1.15 seconds; inferring ω̄ takes around 89 seconds, and synthesizing the texture at a size
of 256× 256 takes around 2− 3 minutes. The computational time to infer ω̄ depends on θ. The more
patches sampled, the slower it is, but given that there are fast methods for finding Nearest Neighbors,
this can be done efficiently. The runtimes reported for all experiments refer to our non-optimized
implementations in MATLAB for an INTEL 2.4 GHz dual core processor machine.

6 Discussion
We have presented a definition of textures in terms of standard concepts from stochastic processes
such as stationarity, ergodicity, and Markovianity. We have then proposed algorithms to infer the
constitutive elements of a texture, ω and ω̄, directly derived from the definitions. The inference
yields a collection of different choices of Markov sufficient statistics, reflecting the multi-scale nature
of textures. Such statistics can then be used for compression purposes: the encoding is given by
the statistics I(ω̄), and decoding is performed by texture synthesis via non-parametric sampling.

9

Quantifying the performance of a texture compression scheme is non-trivial due to the absence of a
universally accepted perceptual distortion score. We have used a score that quantitatively captures
the perceived quality of the synthesized textures, and characterized the performance-complexity
tradeoff empirically. In this work we have assumed that Ω (the stationarity domain) was given to us,
or that equivalently the entire image or image patch is occupied by the texture. Next we will engage
in the inference of Ω (texture segmentation) as well as in the exploitation of temporal consistency, so
the encoding can be transfered in different images of the same scene.

References
[1] S. Boltz, F. Nielsen, and S. Soatto. Texture regimes for entropy-based multiscale image analysis. ECCV,

2010.

[2] N. Bouguila. Texture discrimination using local features and count data models. CCCA, 2011.

[3] A. Efros and T. Leung. Texture synthesis by non-parametric sampling. ICCV, 1999.

[4] S. Fenney. Texture compression using low-frequency signal modulation. In ACM SIGGRAPH, 2003.

[5] R. M. Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE, 2005.

[6] W. Jewell and C. U. B. O. R. CENTER. Credible Means Are Exact Bayesian for Exponential Families.
Defense Technical Information Center, 1973.

[7] B. Julesz. Visual pattern discrimination. IRE Trans info theory, IT-8, 1962.

[8] B. Julesz. Textons, the elements of texture perception and their interactions. Nature, 1981.

[9] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture optimization for example-based synthesis. Proc.
of ACM SIGGRAPH, 2005.

[10] T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-
dimensional textons. IJCV, 2001.

[11] Y. Liu, Y. Tsin, and W. C. Lin. The promise and perils of near-regular texture. IJCV, 2005.

[12] J. Malik and P. Perona. Preattentive texture discrimination with early vision mechanisms. JOSAA, 1990.

[13] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of image data. PAMI, 2002.

[14] P. Mavridis and G. Papaioannou. Texture compression using wavelet decomposition. Proceedings of
Pacific Graphics, 2012.

[15] H. Mobahi, S. R. Rao, A. Y. Yang, S. S. Sastry, and Y. Ma. Segmentation of natural images by texture
and boundary compression. IJCV, 2011.

[16] J. Rissanen. Modeling by shortest data description. Automatica, 1978.

[17] S. Soatto. Steps Toward a Theory of Visual Information. ArXiv http://arxiv.org/abs/1110.2053, Technical
Report UCLA-CSD100028, September 13, 2010.

[18] P. H. Suen and G. Healey. Analyzing the bidirectional texture function. CVPR, 1998.

[19] G. Sundaramoorthi, P. Petersen, V. S. Varadarajan, and S. Soatto. On the set of images modulo viewpoint
and contrast changes. CVPR, 2009.

[20] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. Proceedings of the 37-th
Annual Allerton Conference on Communication, Control and Computing, 1999.

[21] M. Varma and A. Zisserman. Texture classification: Are filter banks necessary? CVPR, 2003.

[22] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Perceptual image quality assessment: From
error visibility to structural similarity. IEEE TIP, 2004.

[23] X. Xie, M. Mirmehdi, X. Xie, and J. Suri. Handbook of texture analysis. ICP, 2008.

[24] Z. Zhang, X. Liang, A. Ganesh, and Y. Ma. Tilt: Transform invariant low-rank textures. In ECCV, 2010.

[25] S. C. Zhu, Y. N. Wu, and D. Mumford. Filters, Random Fields and Maximum Entropy (FRAME):
towards the unified theory for texture modeling. IJCV, 1998.

10

