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Abstract

We present a model and an algorithm to detect salient re-
gions in video taken from a moving camera. In particular, we
are interested in capturing small objects that move indepen-
dently in the scene, such as vehicles and people as seen from
aerial or ground vehicles. Many of the scenarios of interest
challenge existing schemes based on background subtrac-
tion (background motion too complex), multi-body motion
estimation (insufficient parallax), and occlusion detection
(uniformly textured background regions). We adopt a robust
statistical inference approach to simultaneously estimate a
maximally reduced regressor, and select regions that violate
the null hypothesis (co-visibility under an epipolar domain
deformation) as “salient”. We show that our algorithm can
perform even in the absence of camera calibration informa-
tion: while the resulting motion estimates would be incorrect,
the partition of the domain into salient vs. non-salient is
unaffected. We demonstrate our algorithm on video footage
from helicopters, airplanes, and ground vehicles.

1. Introduction
A subset of a sensing field (e.g. visual) is ordinarily

deemed “salient” if it is “sufficiently different” from its sur-
roundings. Saliency is therefore a detection and localization
task (illustrated in Fig.1), often motivated by resource con-
straints: if one can process only a subset of the data, which
subset is most “valuable” or “informative”?

Traditionally, saliency detection has been agnostic of the
underlying task. More recently, however, several authors
have attempted framing saliency detection in an information-
theoretic context, by looking at the “most informative” sub-
set of the data, where “information” is measured in the tradi-
tional sense of Wiener and Shannon. For instance, Itti and
Baldi [11] measure the relative entropy between the prior
and the posterior of an image, interpreted as a distribution of
pixel values, and use it as a measure of saliency or “surprise”.

In this paper, we focus on classes of tasks that involve
decisions about the scene, rather than about the image. These

Figure 1: Detecting salient regions under camera motion:
Left: Tracked feature points (blue) are classified as inliers
(green) or outliers (red). Right: Estimated salient point
density obtained by our algorithm.

include detection, localization, recognition of objects, events,
or spatial locations from images, as well as navigation,
manipulation and other spatial control tasks. While often
“salient” locations in the image correspond to salient geomet-
ric or topological characteristics of the scene (e.g. occluding
boundaries), this is not always the case (e.g. material or
illumination boundaries). Moreover, whether a salient re-
gion of the image does indeed correspond to a geometric or
topological characteristic of the scene cannot be positively
ascertained from one image alone; therefore, we are inter-
ested in saliency detection mechanisms that involve multiple
images. Of course, because part of the motivation for detect-
ing salient regions is to expedite processing (at the expense
of a loss in discriminative power), we are interested in tem-
porally adjacent images (“small baseline”), such as two or
more temporally consecutive frames of a video.

When the camera is static, as in the case of video surveil-
lance, anything that moves is salient. There is a considerable
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amount of literature on background subtraction, that can be
thought of as a form of saliency detection for the specific
case of surveillance tasks (see [12] and references therein).
However if the camera is moving, then detecting objects that
are moving independently is a notoriously difficult problem,
for it amounts to detection of independent rigid motions.
This involves model selection and regression to find the in-
dependently moving objects and their motion. And yet, even
when driving, we can easily spot a moving animal in the
distance. When flying we can detect another flying vehi-
cle, or vehicles moving on the ground. Several attempts
to perform “background subtraction from moving cameras”
[15] have improved efficiency compared to multi-rigid mo-
tion estimation, that was using algebraic geometric methods
[21] or sampling methods that would clearly not be viable
for the task of rapid detection of “informative” regions of a
video. Moreover, there is no direct link between any of these
algorithms and a notion of what “informative” means.

A definition of “information” in the context of visual
decision tasks [17], that draws on ideas from Gibson’s Eco-
logical Approach to Visual Perception [4], can shed some
light on this issue. While the complexity of the image is not
necessarily related to its value in a visual decision task, the
complexity of the part of the image that would be discovered
after a finite time interval represents the “Actionable Infor-
mation Increment” provided by the “next image” [17]. It is
the decrease in uncertainty about the scene provided by the
data. Such a discovery could be due to motion of the viewer,
or motion of an object within the scene, or both. In any case,
this suggests that occlusion detection is a natural form of
saliency detection.

Unfortunately, occlusion detection fails to capture im-
portant visual phenomena, and indeed even fails to capture
occlusion phenomena in many cases of practical importance,
as we describe next. Therefore, in Sect. 1.2 we propose an
alternative scheme for detecting salient regions in videos.

1.1. Occlusion detection fails to detect occlusions

Occlusions are defined as portions of the domain of an
image captured, say, at time t+ dt, that correspond to (are
projections of) portions of the scene that were occluded from
the vantage point where the image at time t was captured.
That is, occlusions are something you see in an image but
not the other. Unfortunately, such occlusions cannot always
be detected in the image: for the examples we mentioned
above, if a car is seen from an airplane while traveling on
a road that has fairly homogeneous texture, occlusion de-
tection fails. Similarly, a person walking against a white
wall can be explained as the person painted on the wall, and
deforming with it. This is because occlusion detection from
images is based on a hypothesis testing process where the
null hypothesis is that portions of two images are co-visible
when there exists a diffeomorphism (“optical flow”) that

takes one image onto the other, up to a residual that is sta-
tistically simple (white, homoscedastic, and independently
distributed) [1].

In formulas, we have that for any given subset Ω of the
image domainD, where an image I : D → R is measured at
each instant of time, the null hypothesis that Ω is co-visible
between t and t+ dt can be written as:

H0 ={∃ a diffeo w : Ω→ D |

I(x, t+ dt)− I(x+ w(x), t)
IID∼ N} (1)

where the residual n(x, t)
.
= I(x, t+ dt)− I(x+ w(x), t)

is spatially and temporally white, independent and identi-
cally distributed according to a simple description, such as a
bivariate Normal distribution, N , with diagonal covariance.
This means that co-visible regions are diffeomorphically
equivalent up to white noise: there exists a differentiable and
differentially invertible map that takes one image onto the
next, except for a white residual. An occlusion is detected as
a violation of the null hypothesis, that is when no diffeomor-
phism can be found that can explain the next image using
the previous one and the addition of white noise.

Therefore, a car moving on a road (thus generating an
occlusion) can be explained as a car painted on the road (gen-
erating no occlusion), and the road-car ensemble stretching
and compressing to yield images that are indistinguishable
from those actually measured. Yet, we can effortlessly detect
moving cars from a moving aerial vehicle (Fig. 3,4).

1.2. Key idea and related work

The problem with occlusion detection is that equivalence
up to a diffeomorphism is too general, and can explain as
ordinary (no violation of the null hypothesis) situations that
we want to consider salient. We would indeed prefer to
detect as salient, any violations of the rigidity assumption,
but we do not want to perform independent detection of
multiple rigid bodies, because that strides with our goal of
computational efficiency.

The key idea of this paper is to still pursue saliency detec-
tion as violation of co-visibility, but define co-visibility in
terms not of diffeomorphic equivalence, but rather epipolar
equivalence. This means that, of all possible diffeomor-
phisms w : D → D, we only consider those that are compat-
ible with an overall rigid motion of the viewer (ego-motion).

In principle, this could be done by computing the “domi-
nant motion”, and then detecting outlier regions as salient.
However, we do not actually care to even estimate the mo-
tion of the viewer; we just want to compute the discriminant
for the null hypothesis (1) in the most efficient way, so that
it would depend on the smallest possible number of free
parameters. As we show in Sect. 2, this number is two.

At face value, what we propose looks more complicated
than testing for diffeomorphic equivalenceH0, for we would



have to enforce the additional condition that the diffeomor-
phism is compatible with a rigid motion. In formulas, after
testing H0 we would have to test for:

H1 ={∃ V ∈ S2, ω ∈ R3, Z : D → R+ |
w(x) = π(ω̂x̄Z(x) + V )} (2)

where V is the translational velocity direction, ω is the rota-
tional velocity vector, Z(x) is the depth map, x̄ = [xT 1]T

is the homogeneous coordinate of x, and π is a canonical
central projection 1. In words, in order to determine whether
a region is salient, we would have to search at each instant
for all possible translational directions, rotational velocities
and depth maps until none of them fits the data up to a white
residual. The two hypotheses can be tested simultaneously
by substituting the expression of w in (2) into (1). The result
would be akin to devising a robust ego-motion estimation
scheme, whereby one simultaneously tries to find the trans-
lational direction V , rotational velocity ω, depth map Z, and
occluded region Ω. This has been indeed done before in the
literature on “dominant motion estimation” [10] and robust
motion estimation [16], and relates to robust statistics [8]
and outlier rejection in motion estimation [3].

This would already be an improvement on multi-body
motion segmentation. If we have a number, say K, of in-
dependently moving objects, and N sensors, then multiple
motion estimation requires inferring N + 5K unknown pa-
rameters [21]. Dominant motion estimation, on the other
hand, only requires inferring N + 5 parameters in order to
build the discriminant for H0 ∪ H1. Nevertheless, when
N is large, this becomes prohibitive. When the calibration
of the camera is unknown, in addition to these parameters
one would also have to infer 5 additional parameters (optical
center x0 ∈ D, focal length f , aspect ratio s and skew θ).

As we have already anticipated, our goal is not to esti-
mate ego-motion, but to detect salient regions in the image
based on violation of rigidity. Therefore, we seek for ways
to reduce the discriminant to its minimal form, which we do
in Sect. 2. Several algorithms [6, 9, 13, 14, 22] have been
proposed to detect salient regions with background subtrac-
tion techniques by removing the stationary camera limitation.
However, these methods largely rely on estimation of a ho-
mography or a 2D affine transform to compensate for the
camera motion for the scenes that can be approximated well
by a plane and do not work in the case of a complex scene.

Most relevant to our work is Sheikh et al. [15] which
also detects independently moving objects by exploiting a
geometrical constraint. In their case, they exploit the rank-
constraint on trajectories on the background and hence they
overcome the restrictions on the scene models shared by

1Note that ω̂ .
=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 belongs to the Lie algebra

of the skew-symmetric matrices so(3) .
= {S|ST = −S}.

others. However, this method requires a large number of
frames to operate. This is a limitation of their algorithm
since salient regions might appear in very few frames (e.g.
Fig. 3,4) and the extracted trajectories might have an even
shorter length. On the other hand, our method only requires
2 frames to detect salient regions.

2. Derivation of the discriminant
If we consider the instantaneous motion of the scene

relative to the viewer, where the entire scene is moving
rigidly, the deformation of the entire domain of the image
can be explained as a function of the motion (translational
velocity direction V and rotational velocity ω) and the shape
of the scene, described by a scalar function from the image
domain D to the positive reals, Z : D → R+, as described
in (2). If we call y(x) ∈ R2 the velocity of the projection of
the point with coordinates x̄Z(x) ∈ R3 onto the image, we
have that [18]:

y(x) = A(x)
V

Z(x)
+ B(x)ω (3)

where:

A(x)
.
=

[
1 0 −x1
0 1 −x2

]
(4)

B(x)
.
=

[
−x1x2 1 + x21 −x2
−1− x22 x1x2 x1

]
(5)

Traditional dominant motion estimation and robust statistical
approaches search for the unknown motion V, ω and range
map Z(·) that solve the following optimization problem:

Ẑ, V̂ , ω̂ = arg min

∫
D

‖y(x)−A(x)
V

Z(x)
− B(x)ω‖Hdx

(6)
where ‖ · ‖H denotes a robust norm, for instance a Huber
norm [8]. After this is done, one would find the salient
regions that violate this model, that is:

Ω
.
= {x ∈ D | ‖y(x)−A(x)

V̂

Ẑ(x)
− B(x)ω̂‖ > ε} (7)

where ε is related to the regularization parameter in the
Huber norm. Note that the region Ω can, and in general
will be multiply-connected, so even though this is a binary
classification problem, it enables detecting any number of in-
dependently moving objects, each projecting onto a different
simply-connected subset of the image domain. Furthermore,
when (6) is solved in the continuum, regularization on Z has
to be imposed (this is not necessary when (6) is computed at a
sparse set of locations). This is laborious, especially because
the procedure of finding the motion V̂ , ω̂ and the range map
Ẑ has to be iterated once the outlier set Ω is removed, which
in turn changes the motion and range estimates, resulting in
a non-convex optimization problem.



Therefore, we resort to a trick introduced by Heeger and
Jepson [7], whereby one solves the problem above for the
case of the `2 norm, by exploiting the geometry of Hilbert
spaces to “eliminate” the unknown depths Z(x) and un-
known rotational velocity ω from (6). This can be done
easily since the model (3) is linear in 1

Z and ω, and therefore
one can solve-and-substitute, thereby leaving a set of con-
straints on the unknown V alone. It has been shown [2] that
this can be done without altering the topology of the solution
space, in the sense that no spurious solutions are introduced
by the algebraic manipulation.

Formally, this can be accomplished (Sect. 2.1) by rewrit-
ing the model (3) in terms of an operator C(V ) that multi-
plies all the unknown depths and rotational velocity, then
multiplying by the orthogonal projector operator Ĉ(V ) that
eliminates the dependency on ω and Z, and leaves con-
straints on the unknown V only.

2.1. Computation of the optimal discriminant

Following the discussion in Sect. 2, salient points x ∈ Ω
will be detected as a violation of the hypothesis provided by
the model (3). Equivalently, one can seek to infer V in a
robust fashion and detect Ω as the outlier set. We focus on a
finite number of N sparse measurements, xi, i = 1, . . . , N
and introduce a diagonal weight matrixW ∈ R2N×2N . Ide-
ally, W should be zero except for points that follow (3).
Writing (3) as a system of linear equations for all points and
introducingW as a weight matrix we have:

WY (X) =WC(V )
[
p(x1) . . . p(xN ) ω

]T
(8)

where, p(xi)
.
= 1

Z(xi)
, Y .

= [y(x1)T , . . . , y(xN )T ]T , X .
=

[xT1 , . . . , x
T
N ]T ,W .

= diag(w1, w2, . . . , w2N−1, w2N ),

C(V )
.
=

 A(x1)V B(x1)
. . .

...
A(xN )V B(xN )

 (9)

For any (unknown) V , we can solve for P
.
=

[p(x1) . . . p(xN )]T and ω using Least Squares:

[P, ω]T = (WC(V ))†WY (X) (10)
.
= (C(V )TWTWC(V ))−1C(V )TWTWY (X)

For readability purposes, we will henceforth drop the explicit
dependence of C on V and of Y on X . We can then plug
the solution of this equation back to the model to getWY =
WC(WC)†WY . Rearranging, we get:

Ĉ(V )Y
.
=
(
I −WC(WC)†

)
WY = 0 (11)

The above constraint is true even in the presence of outliers
when the elements ofW corresponding to those equations
are 0. In practice, this cannot be achieved though, due to

the presence of noise and unmodeled phenomena. Assum-
ing that the error in motion estimation follows a Gaussian
distribution the Least Squares estimation of P and ω is opti-
mal. Hence it is important to calculateW properly so that
inference of V is improved. To estimate V we solve the
following minimization problem:

minimize
V

ψ(V ) =
1

2
||Ĉ(V )Y ||22 (12)

where V ∈ S2. To calculate the weight matrixW we em-
ploy a more traditional M-estimator, as customary in robust
statistics, that does not explicitly inferW , but instead uses
a composite norm residual where the weight of the outliers
is reduced. This yields a minimal model, where the only
unknowns are the directional coordinates of the translational
velocity V , as discussed in the previous section.

Since we expect that most points in the scene will move
rigidly, we anticipate that Ĉ(V )Y is sparse. We would
hence want to choose the diagonal elements ofW to enhance
sparsity of the residual. In addition, every pair of elements
of Ĉ(V )Y , corresponds to the residual for a single point and
hence this should also be taken into account when estimating
W . The outline of the algorithm is given below.

Algorithm 1: Iterative reweighted subspace minimiza-
tion (IRWSM).

InitializeW(1) = I, V (0) = [1, 0, 0]T

foreach k = 1, 2, 3, . . ., K do
Solve the following problem initializing with
V (k−1):
V̂ (k) = arg min

V

1
2 ||Ĉ(V,W(k))Y ||22

e(k) = Ĉ(V̂ (k), I)Y
λ = 1/mean(||e(k)||)
foreach i = 1, 2, 3, . . ., N do

w
(k+1)
2i−1 = w

(k+1)
2i = 1

||[e(k)
2i−1,e

(k)
2i ]||2+ε

W(k+1) = diag(w
(k+1)
1 , . . . , w

(k+1)
2N )

V (k+1) := V̂ (k)/‖V̂ (k)‖

where 1 is the indicator function. Note that this is a gen-
eralization of the case proposed by [7]. The authors of [7]
minimized (12) withW = I using exhaustive search. In that
case the above problem is reduced to minimizing C⊥Y .

=[
I − C(CTC)−1CT

]
Y . By introducingW , we solve this

more general minimization problem to improve outlier re-
jection. Since the problem is non-convex, we use gradient
descent with backtracking line search to estimate V. The de-
tails of the computation of the gradient of (12) are provided
in the supplementary material2. We classify a point as an out-
lier as follows: define ê = [ê1 . . . ê2N ]T

.
= Ĉ(V (K), I)Y

2http://vision.ucla.edu/˜giorgos/cvpr2012/

http://vision.ucla.edu/~giorgos/cvpr2012/


and Ei
.
= [ê2i−1, ê2i]

T for i = 1, . . . , N . A point i is clas-
sified as an outlier when ||Ei||2 exceeds ε. The threshold ε
can be determined using various techniques, one of which is
explained in Sect. 3.

2.2. Effects of (mis)calibration

The model we have derived assumes that the image co-
ordinates xi and their corresponding velocities yi are cali-
brated, that is they are available in metric units relative to
the reference frame having origin at the principal point (in-
tersection of the optical axis with the image plane), with the
optical axis orthogonal to the image plane and aligned with
the spatial Z axis. Most often, however, coordinates and
velocities are given in pixel units, relative to, say, the top-left
corner of the image. One cannot expect, in general, to just
be able to plug the latter into the equation and get a sensible
answer. Therefore, in this section we explore the effects of
miscalibration on outlier detection.

We first show that knowledge of the principal point and
the focal length does not affect the classification of outliers.
We introduce the calibration matrix K ∈ R3×3 in (3) and
rewrite it in homogeneous coordinates:[

y
0

]
= K

[
AV B
0 0

] [
1/Z
ω

]

=

 fsx fsθ Ox
0 fsy Oy
0 0 1

[ AV
Z + Bω

0

]
(13)

From (13) it is obvious that y(x) is independent of (Ox, Oy).
On the other hand, also obvious from (13), the focal length
and scale do indeed affect the estimation of the velocity.
But the focal length does not affect the outlier distribution:
writing the expressions of y, from (13), similarly as in Sect.
2.1, we get:

WY (X) = fWKC(V )[P, ω]T

.
= fD[P, ω]T (14)

where K ∈ R2N×2N is a block diagonal matrix with its

block diagonal entries being K̂ .
=

[
sx sθ
0 sy

]
∈ R2×2.

Solving for the same unknowns as before:

[P, ω]T = (fD)†WY (X) = (f2DTD)−1fDTWY (X)

WY (X) = fD(f2DTD)−1fDTWY (X)

= D(DTD)−1DTWY (X) (15)

Focal length is cancelled out in the expression and hence it is
not necessary in order to employ our algorithm. In addition,
since scale consists of two positive real numbers (or one
number, if the pixels are square, or if the form factor of the
pixel is known), one can simply augment the search from
two parameters, corresponding to V , to four parameters,

corresponding to sx, sy . In the following experiments we
normalize the pixel coordinates to [−1, 1]. Regarding the
skew of the pixel array, it can be assumed to be zero; that is,
the pixels are rectangular, and not generic parallelograms.

3. Empirical evaluation
We tested our algorithm on 15 sequences. The sequences

People-1, People-2, Cars-3, Cars-4, Cars-5, Cars-6 shown
in this order in Fig. 2 and Cars-2/06 are from the Hopkins
155 motion segmentation dataset [20] and ground truth was
provided. In addition, the trajectories of feature points are
provided by the dataset and are available over the whole
duration of the video sequence. This makes the dataset
appropriate for comparison with Sheikh et al. [15] which
requires the trajectories to be present in an extended period
of time. These sequences contain objects that move slowly
between consecutive frames, they are close to the camera
and are moving independently from it.

The sequences Traffic-1,-2,-3,-4 (Fig. 3) were recorded
from a helicopter monitoring a traffic jam. The motion of the
camera covers a wide variety of translations and rotations.
Bridge-1,-2,-3 (Fig. 4) were taken from an airliner approach-
ing Boston Logan airport. People-3 (second row in Fig. 1) is
an aerial view of closed distanced objects. These 8 sequences
were manually annotated. In addition, to extract trajectories
in these sequences we used the code provided by [19] that
yields dense point trajectories. We used the Harris corner
detector [5] to eliminate trajectories on textureless regions.
Subsequently, an average of 1300 trajectories per frame are
left. Since the extracted trajectories are not guaranteed to be
present in all frames hence these sequences are not suitable
for comparison with [15]. On the other hand, our algorithm
is not limited by the temporal support of trajectories. Using
the resulting trajectories for a pair of frames in a sequence
(we use the middle pair), we calculate the optical flow i.e.
y(xi) for i = 1, . . . , N which is then used as the input to
Algorithm 1 to estimate V and determine the salient regions.

To distinguish between inliers and outliers, we calculate
||Ei||2 for each point xi as its residual. We then construct the
histogram of the residuals and find the local minimum near-
est to the 0 residual bin. The residual value corresponding to
this bin is selected as the threshold ε.

We successfully detect most of the salient regions in all
sequences. In Fig. 1, 2, 3 and 4 we show the tracked regions
and the salient regions as classified by our method. In Table
1, we compare the performance of our algorithm to three
other methods using the F-measure: (i) RANSAC [3] with
epipolar constraint. We fixed the number of iterations to
1000 and varied the threshold for each sequence to obtain
the best results, (ii) we implemented the original method pro-
posed by [7] but minimized it with gradient descent rather
than exhaustive search i.e. we used K = 1 andW = I as
parameters in our algorithm, and (iii) we implemented the



Figure 2: Sample results from the Hopkins 155 dataset: Odd rows: Images with tracked points. Red and green points show the
locations of tracked points as predicted by the model. Points in green are the points that are classified as inliers and in red
those that are classified as outliers. Blue dots (not visible for inlier points) are the true positions of tracked points. Even rows:
Images showing in color the detected outliers. The color corresponds to a sum of Gaussians centered at each salient point.

outlier detection method proposed by Sheikh et al. [15] that
enforces the rank constraint on trajectories using RANSAC.
We also fixed the number of iterations to 1000 and varied
the threshold to obtain the best results. This method requires
trajectories available in an extended period of time which
means it is only possible to compare with it on the Hop-

kins 155 dataset. For their method, in all experiments, we
used either trajectories of length 30 or of the whole video,
whichever was the smallest (27 frames on average).

Our algorithm significantly outperforms the other meth-
ods in 13 out of 15 sequences and achieves comparable
results in the other two, Table 1. Although [15] uses a large



Figure 3: Four aerial views of a motorway. In all images cars in the right lane are stationary and cars in the left lane are
moving. The true outliers in these cases are the moving cars in the left lane. The first row shows the dense tracked points in
each image. The second row shows in color the detected outliers. Color convention is the same as in Fig. 2.

Figure 4: Three aerial views of a bridge taken from an airliner during a turn approaching Boston’s airport. The first row shows
the images with the tracked points and the second highlights the salient regions. The color codes are the same as in Fig. 2.

number of frames to detect outliers, our algorithm still per-
forms better even though we make use of just 2 frames to
make a decision. In addition, our method automatically
chooses the threshold value whereas for RANSAC and [15]
we manually chose the best one. Even so, we still perform
significantly better than both of these methods. For the
Hopkins 155 dataset, it takes on average 32.6 seconds for a
non-optimized MATLAB implementation of our algorithm
to converge to a solution, whereas for the rest of the se-
quences, it takes 68 seconds with an average of 1300 tracked
points. We terminate our minimization at each iteration
when ||V (k) − V (k−1)||/||V (k−1)|| < 10−3. The average
runtime of RANSAC was 2.3 seconds and that of [15] was
2.6 seconds. Experiments were ran on an Intel 2.4 GHz dual
core processor machine.

Failure modes. The most significant failure case of our
method is shown in Fig. 4. Moving cars at the far end of the

bridge are not detected. This can be accounted to the fact that
the outliers that are not detected are far from the camera and
they appear stationary due to their relatively small motion.

4. Discussion
We have presented a model for detecting “salient” regions

in an image that correspond to objects that are moving in a
way that is incompatible with a single rigid motion. Note
that, even if the motion is rigid, the deformation it induces
on the domain of the image is, in general, as complex as
a general diffeomorphism, depending on the shape of the
scene, and even more complex if one considers occlusions.
Therefore, simple “background subtraction” relative to a
small-dimensional parametric motion model (such as an
homography) does not work in general. Even occlusion
detection, that in principle can be used for testing the co-
visibility hypothesis, fails in the presence of objects moving



People-1 People-2 Cars-2/06 Cars-3 Cars-4 Cars-5 Cars-6 People-3
Ours 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.91
Heeger & Jepson [7] 0.35 0.06 0.43 0.24 0.22 0.69 0.11 0.88
RANSAC 0.64 0.77 0.54 0.69 0.21 0.65 0.56 0.69
Sheikh et al. [15] 0.91 0.68 0.95 0.90 0.94 0.93 0.80 -

Traffic-1 Traffic-2 Traffic-3 Traffic-4 Bridge-1 Bridge-2 Bridge-3
Ours 0.78 0.80 1.00 0.93 0.55 0.52 0.63
Heeger & Jepson [7] 0.78 0.80 1.00 0.93 0.54 0.51 0.63
RANSAC 0.11 1.00 0.11 0.35 0.49 0.60 0.50
Sheikh et al. [15] - - - - - - -

Table 1: Comparison on salient point detection performance of our algorithm against [7], RANSAC under epipolar constraint
and [15] in terms of the F-measure. We compared the performance on 15 sequences. The ground truth and trajectories for the
first 7 sequences were provided by the Hopkins 155 dataset. The last 8 were manually annotated by the authors and trajectories
were extracted using [19]. Our algorithm significantly outperforms all other 3 methods in almost all sequences.

on a homogeneous background.
Therefore, we have proposed a scheme to test for vio-

lations of co-visibility, relative to an epipolar domain de-
formation (as opposed to a general diffeomorphic domain
deformation) using tools of robust statistics, and a simple
expedient to eliminate motion and structure parameters that
do not affect the outlier distribution.

We have also shown that accurate calibration of the cam-
era is not necessary: while calibration error clearly affects
the motion estimates, we have shown that some calibration
parameters (principal point, focal length) do not affect the
decision boundary between inlier and outlier, so they can be
ignored for the purpose of saliency detection. Scale can ei-
ther be coarsely calibrated, or estimated as a hidden variable
in the regression/classification task.

Failure modes of our algorithm, illustrated in the exper-
iments, include cases where the objects are too small or
moving too slowly. As with any classification scheme, there
is a dependency on a scalar parameter (detection threshold)
that we have chosen using standard guidelines from robust
statistics. Our algorithm is currently not operating in real
time. However, the problem has significant structure that
could be exploited to devise efficient implementations in
hardware platforms in the near future.
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